首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1).  相似文献   

2.
Nuclear Synthesis of Cytoplasmic Ribonucleic Acid in Amoeba proteus   总被引:1,自引:1,他引:0       下载免费PDF全文
The enucleation technique has been applied to Amoeba proteus by several laboratories in attempts to determine whether the cytoplasm is capable of nucleus-independent ribonucleic acid synthesis. This cell is very convenient for micrurgy, but its use requires a thorough starvation period to eliminate the possibility of metabolic influence by food vacuoles and frequent washings and medium renewal to maintain asepsis. In the experiments described here, amoebae were starved for periods of 24 to 96 hours, cut into nucleated and enucleated halves, and exposed to either C-14 uracil, C-14 adenine, C-14 orotic acid, or a mixture of all three. When the starvation period was short (less than 72 hours), organisms (especially yeast cells) contained within amoeba food vacuoles frequently showed RNA synthesis in both nucleated and enucleated amoebae. When the preperiod of starvation was longer than 72 hours, food vacuole influence was apparently negligible, and a more meaningful comparison between enucleated and nucleated amoebae was possible. Nucleated cells incorporated all three precursors into RNA; enucleated cells were incapable of such incorporation. The experiments indicate a complete dependence on the nucleus for RNA synthesis. The conflict with the experimental results of others on this problem could possibly stem from differences in culture conditions, starvation treatment, or experimental conditions. For an unequivocal answer in experiments of this design, ideally the cells should be capable of growth on an entirely synthetic medium under aseptic conditions. The use of a synthetic medium (experiments with A. proteus are done under starvation conditions) would permit, moreover, a more realistic comparison of metabolic capacities of nucleated and enucleated cells.  相似文献   

3.
4.
The question of RNA synthesis in enucleate cytoplasm of Amoeba has been approached experimentally by incubating enucleate amoebae in a labelled RNA precursor and determining the incorporation into RNA autoradiographically. The results indicate that there is a cytoplasmic incorporation mechanism which can operate in the absence of the nucleus. A comparison is made between Acetabularia and Amoeba with respect to the origins of cytoplasmic RNA. It is concluded that the existing data are consistent with the assumption that some cytoplasmic RNA is of nuclear origin in both organisms.  相似文献   

5.
The contributions of various components of soil microflora and microfauna to rhizosphere phosphatase activity were determined with hydroponic cultures. Three treatments were employed: (i) plants alone (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) (ii) plants plus bacteria (Pseudomonas sp.), and (iii) plants plus bacteria plus amoebae (Acanthamoeba sp.). No alkaline phosphatase was detected, but an appreciable amount of acid phosphatase activity (120 to 500 nmol of p-nitrophenylphosphate hydrolyzed per h per plant) was found in the root culture solutions. The presence of bacteria or bacteria and amoebae increased the amount of acid phosphatase in solution, and properties of additional activity were identical to properties of plant acid phosphatase. The presence of bacteria or bacteria and amoebae increased both solution and root phosphatase activities at most initial phosphate concentrations.  相似文献   

6.
Dynamics of the cytoskeleton in Amoeba proteus   总被引:3,自引:0,他引:3  
Fluorescein-labeled muscle actin was microinjected into Amoeba proteus and followed during intracellular redistribution by means of the image-intensification technique. The fully polymerization-competent protein becomes part of the endogenous actomyosin system undergoing dynamic changes over time periods of several hours. Single-frame analysis of long-term sequences enabled the direct demonstration of both the contractile activities and morphological transformations of microfilaments in normally locomoting, immobilized and phagocytozing specimens. In normally locomoting cells the filament layer undergoes continuous changes in spatial distribution depending on the actual pattern of cytoplasmic streaming and cell shape. The highest degree of differentiation is always maintained in the intermediate region between the front and the uroid, thus indicating this segment of the cortex to be the most important site in generating motive force for pseudopodium formation and ameboid movement. In immobilized cells contracted by the application of ruthenium red or relaxed by different anesthetics, the filament layer forms a continuous thick sheath beneath the cell surface or becomes completely disintegrated. In phagocytozing cells the local polymerization of actin at the tip of pseudopodia forming the food-cup and around the nascent phagosome points to a significant participation of the actomyosin system in the process of capturing and constricting prey organisms. Although our results provide clear evidence for the overall importance of motive force generation according to the hydraulic pressure theory, some motile phenomena exist in Amoeba proteus that cannot exclusively be explained by this mechanism.  相似文献   

7.
8.
Summary Normal articular cartilages from the weightbearing areas of the femoral condyles of the knee joints of 11 patients (3–20 years old) and of 35 Schwarzkopf sheep (3 months to 2 years old) were studied using the electron microscope. The study has shown that the matrix of normal articular cartilage is not only composed of collagen fibrils and proteoglycans, but also contains two types of elastic system fibres. Small elastic fibres can be identified in the superficial and lower radiate zones of cartilage of man and sheep. Similar to elastic fibres in other tissues, they consist of a central amorphous core and are surrounded by aggregates of 10 nm microfibrils. Another type of elastic system fibres, oxytalan fibres, are found in the intermediate and upper radiate zones of the articular cartilage.  相似文献   

9.
Sopina VA  Beliaeva TN 《Tsitologiia》2000,42(6):602-612
In free-living Amoeba proteus (strain B), acid phosphatase (AcP) was examined by disc-electrophoresis in polyacrylamide gel. The tartrate-sensitive amebian AcP was greatly inhibited by dithiothreitol and Cu2+, and only partly inhibited by sodium orthovanadate, ammonium molybdate, EDTA, disodium salt and Mg2+, Ca2+, Zn2+ and Mn2+. On the contrary, it appeared to be resistant to sulfhydryl reagents--4(hydroxymercury) benzoic acid, sodium salt and N-ethylmaleimide. Unlike the tartrate-sensitive enzyme, the tartrate-resistant AcP was greatly inhibited by EDTA and partly inhibited by dithiothreitol, Mg2+ and Cu2+ (Mn2+ > Cu2+), being activated by orthovanadate, molybdate, sulfhydryl reagents, Mg2+, Ca2+ and Zn2+. Both tartrate-sensitive and tartrate-resistant AcPs lack apparently free SH-groups necessary for their catalytic activities. Using 2-naphthyl phosphate as a substrate at pH 4.5, six AcP electromorphs were revealed in cytosol and sediment, four of these being most frequently localized in the former, and two in the latter. Two other AcP electromorphs were confined to the sediment only. Depending on the quantity of sedimented amoebae making a homogenate (0.5 or 2.0 cm3), that was added to Percoll solution, the lysosomal AcP fraction in polyacrylamide gel was represented by one or two tartrate-sensitive electromorphs. Therefore, tartrate-resistant AcP in A. proteus may be a lysosomal enzyme, while tartrate-resistant AcP may correspond to serine/threonine protein phosphatase.  相似文献   

10.
11.
12.
13.
14.
15.
Immediate contact with large volumes of cold 50% (v/v) buffered glycerol preserved typical ameboid shape of Chaos chaos and Amoeba proteus with no visible distortions. These technics allowed determination of the contraction sites in these glycerinated models upon application of ATP-Ca-Mg-solutions. The ectoplasmic tube was the main site of contraction. Preliminary EM investigations revealed thick and thin filaments, associated with the ectoplasmic tube near the plasmalemma, which appeared to be the basis for the contractility of the ectoplasmic tube. There was no predominant contraction of the pseudopodial tips or the endoplasm in these models. The changes of volume were as much as 50%, and in some cases were not accompanied by any change in the length of the ameba; however, lengthwise contractions of the ectoplasmic tube in some amebae occurred to as much as 25%. The data substantiate a basic requirement of the ectoplasmic tube contraction theory of ameboid locomotion.  相似文献   

16.
Acid phosphatase activity in culture medium of tobacco cells growing in suspension increased with the age of the culture from which the medium was obtained. The increase in the activity was accelerated by omitting inorganic phosphate from nutrient medium, and it was depressed by addition of inorganic phosphate or cycloheximide. Amylase and β-galactosidase activities were not induced by the omission of inorganic phosphate. It was concluded that derepression of acid phosphatase synthesis was involved in the increase in the extracellular acid phosphatase activity upon inorganic phosphate depletion.  相似文献   

17.
18.
A Symbiont-Produced Protein and Bacterial Symbiosis in Amoeba proteus   总被引:1,自引:0,他引:1  
ABSTRACT. Gram- symbiotic X-bacteria present in the xD strain of Amoeba proteus as required cell components, synthesize and export a large amount of a 29-kDa protein (S29x) into the host's cytoplasm across bacterial and symbiosome membranes. The S29x protein produced by E. coli transformed with the s29x gene is also rapidly secreted into the culture medium. Inside amoebae, S29x enters the host's nucleus as detected by confocal and irnmunoelectron microscopy, although it is not clear if S29x is selectively accumulated inside the nucleus. The deduced amino-acid sequence of S29x has a stretch of basic amino acids that could act as a nuclear localization signal, but there is no signal peptide at the N-terminus and the transport of S29x is energy independent. The functions of S29x are not known, but in view of its prominent presence inside the amoeba's nucleus, S29x is suspected to be involved in affecting the expression of amoeba's nuclear gene(s).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号