首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Lymphocytes from cancer patients were stimulated in mixed culture with autologous tumour (MLTC) or pooled allogeneic lymphocytes (MLC). Both protocols induced increased uptake of 3H-thymidine at 5 days and the appearance of lymphoblasts. Blasts were isolated on discontinuous Percoll gradients and either expanded as bulk cultures or cloned directly under limiting dilution conditions in the presence of conditioned medium containing IL-2. Results with MLTC-blast-CTC have been reported elsewhere. MLC-activated cultures lysed autologous tumour but not autologous lymphoblasts. Lysis of some allogeneic tumours, lymphoblasts from members of the inducing pool, and K562 was also apparent. MLC activated cultures did not undergo restimulation in response to autologous tumour or lymphocytes but were restimulated by leukocytes from pool members.MLTC clones showed autologous tumour-specific cytotoxic activity or cross-reactive proliferative responses with tumours of the same site and histology. The majority of MLC clones cytotoxic for autologous tumour were also specific and did not lyse allogeneic tumour, K562, or lymphoblasts from the inducing pool. Two clones lysed autologous tumour and pool members. None of the clones tested proliferated in response to autologous tumour following MLC activation but some were responsive to pool members and one clone was restimulated by autologous monocytes. No association was found between clone phenotype and function. The implication of these data is that the effector cells with activity against autologous tumour induced in MLC arose largely by transstimulation of in vivo-activated tumour reactive lymphocytes by IL-2 release rather than expansion of NK-like effectors or sharing of antigenic specificities between tumour and allogeneic lymphocytes. Since MLC activation of cancer patients lymphocytes does not induce proliferative responses to autologous tumour it is unlikely to be a useful procedure in preparing cells for immunotherapy protocols. Abbreviations used in this paper: PBL, peripheral blood lymphocytes; TIL, tumour infiltrating lymphocytes; MLTC, mixed lymphocyte tumour culture; IL-2, interleukin-2; MLC, mixed lymphocyte culture; LSM, lymphocyte separation medium; BSS, balanced salt solution; HuSe, human serum; PBS, phosphate-buffered saline; CTC, cultured T cells; PHA, phytohaemagglutinin; CM, cultured medium; NK, natural killer; FcR, receptor for the Fc portion of IgG  相似文献   

2.
Activation of peripheral blood lymphocytes (PBL) from a melanoma patient either in secondary MLC in which EBV-transformed B cells from the cell line JY were used as stimulator cells, or by co-cultivation with the autologous melanoma cells in a mixed leukocyte tumor cell culture (MLTC) resulted in the generation of cytotoxic activity against the autologous melanoma (O-mel) cells. From these activated bulk cultures four cloned cytotoxic T lymphocyte (CTL) lines were isolated. The CTL clone O-1 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+), and O-36 (T3+, T4-, T8+, OKM-, HNK-, and HLA-DR+) were obtained from MLC, whereas the CTLC clones O-C7 (T3+, T4+, T8-, OKM-1-, HNK-, and HLA-DR+) and O-D5 (T3+, T4-, T8+, OKM-1-, HNK, and HLA-DR+) were isolated from autologous MLTC. All four CTL clones were strongly cytotoxic for O-mel cells but failed to lyse autologous fibroblasts and autologous T lymphoblasts. Moreover, the CTL clones lacked NK activity as measured against K562 and Daudi cells. Panel studies indicated that the CTL clones also killed approximately 50% of the allogeneic melanoma cells preferentially, whereas the corresponding T lymphoblasts were not lysed. Monoclonal antibodies against class I (W6/32) and class II (279) MHC antigens failed to block the reactivity of the CTL clones against O-mel and allogeneic melanoma cells, indicating that a proportion of human melanoma cells share determinants that are different from HLA antigens and that are recognized by CTL clones. In contrast to the CTL clones isolated from MLTC, the clones obtained from MLC also lysed JY cells, which initially were used as stimulator cells. The reactivity of O-36 against JY could be inhibited with W6/32, demonstrating that this reactivity was directed against class I MHC antigens. These results suggest that the lysis of O-mel and JY cells by O-36 has to be attributed to two independent specificities of this CTL clone. The specificity of the other cross-reactive CTL clone (O-1) could not be determined. The notion that individual CTL clones can have two specificities was supported by the following observations. The cytotoxic reactivity of both O-1 (T4+) and O-36 (T8+) against JY was blocked by monoclonal antibodies directed against T3 and human LFA-1, and against T3, T8, and human LFA-1, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
In this study, we demonstrate that tumor mRNA–loaded dendritic cells can elicit a specific CD8+ cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. CTLs from three patients expressed strong cytolytic activity against autologous glioma cells, did not lyse autologous lymphoblasts or EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Also, DCs-pulsed normal brain mRNA failed to induce cytolytic activity against autologous glioma cells, suggesting the lack of autoimmune response. Two patients' CD8+ T cells expressed a modest cytotoxicity against autologous glioma cells. CD8+ T cells isolated during these ineffective primings secreted large amounts of IL-10 and smaller amounts of IFN- as detected by ELISA. Type 2 bias in the CD8+ T-cell response accounts for the lack of cytotoxic effector function from these patients. Cytotoxicity against autologous glioma cells could be significantly inhibited by anti-HLA class I antibody. These data demonstrate that tumor mRNA–loaded DC can be an effective tool in inducing glioma-specific CD8+ CTLs able to kill autologous glioma cells in vitro. However, high levels of tumor-specific tolerance in some patients may account for a significant barrier to therapeutic vaccination. These results may have important implications for the treatment of malignant glioma patients with immunotherapy. DCs transfected with total tumor RNA may represent a method for inducing immune responses against the entire repertoire of glioma antigens.  相似文献   

4.
Moloney leukemia virus-specific cytotoxic T lymphocytes (CTL), generated by secondary in vitro stimulation of spleen cells with syngeneic virus-infected cells, frequently lysed not only syngeneic virus-infected cells, but also noninfected allogeneic target cells. This phenomenon was studied with B6(H-2 b ) responder cells and a series of H-2K b -mutant responder cells. Thus, B6 Moloney-specific CTL lysed noninfected K b -mutant cells, but not B6 cells, whereas K b -mutant Moloney-specific CTL lysed noninfected B6 cells and not noninfected cells of the same mutant. Cold-target-inhibition studies showed that the CTL reactions against different allogeneic cells were mediated by different subpopulations of virus-specific CTL: lysis of allogeneic target cells was fully inhibited only by the same allogeneic and by syngeneic virus-infected cells, but not by another allogeneic cell, also lysed by the same effector-cell population. Lysis of syngeneic virus-infected cells could not be inhibited by allogeneic target cells. These data imply that a minority of virus-specific CTL shows cross-reactivity with a given allogeneic target cell. It is concluded that limited amino acid substitutions in the Kb molecule alter the repertoire of Moloney virus-specific CTL, as reflected in alloreactive CTL populations, even though the virus-specific CTL response. of B6 and all K b mutants is mainly Db-restricted. Thus, the development of tolerance to self class-I major histocompatibility complex (MHC) molecules affects the repertoire of self-restricted cytotoxic T cells.  相似文献   

5.
BALB/c-derived tumor cells were transfected with recombinantEscherichia coli β-galactosidase (β-gal) genes which were inserted into IgM heavy chain gene derivatives, leading to expression of the resulting fusion protein in different cellular compartments. A β-gal-specific, major histocompatibility complex (MHC) class I-restricted CD8+CD4 cytotoxic T lymphocyte (CTL) line of BALB/c origin raised against one transfectant expressing cytoplasmic β-gal also lysed transfectants expressing β-gal as membrane-inserted fusion protein, as well as transfectants secreting β-gal. Our data show that MHC class I-restricted CTL can recognize fragments of nonviral cellular proteins, be they expressed as intracellular, membrane-inserted, or secreted products. The findings confirm and extend a hypothesis on the nature of minor histocompatibility (H) antigens formulated earlier.  相似文献   

6.
 In this study, we examined the therapeutic antitumor effect of cytotoxic T lymphocytes (CTL) generated against CD86-transfected mouse neuroblastoma C1300. We first generated the transfectant, CD86+C1300, expressing a high level of mouse CD86 on the cell surface. While CD86+C1300 cells were rejected in syngeneic A/J mice when inoculated subcutaneously, neither vaccination nor any therapeutic antitumor effect was obtained, implying that C1300 may be a poorly immunogenic tumor. However, in vitro stimulation of splenocytes from either C1300-bearing or CD86+C1300-rejecting mice with CD86+C1300 cells resulted in remarkable CTL activity against C1300 cells. The CTL activity induced by CD86+C1300 was mediated by T cell receptor/CD3 and CD8 and was further enhanced by the addition of interleukin-2. Intravenous inoculation of C1300 cells led to multiple organ metastases including the liver, lung, kidney, ovary, lymph node and bone marrow. To examine the therapeutic effect of CTL in this metastasis model, CTL induced by parental or CD86+C1300 cells were administrated into C1300-bearing mice. Adoptive transfer of CD86+C1300-induced CTL resulted in marked elimination of multi-organ metastases and prolonged survival in almost all mice, 70% of which survived indefinitely. These results indicate that adoptive transfer of CTL induced by CD86-transfected tumor cells in vitro would be effective and useful for tumor immunotherapy against poorly immunogenic tumors. Received: 18 November 1996 / Accepted: 3 March 1997  相似文献   

7.
The effects of prodigiosin 25-C (PrG) which preferentially suppresses cytotoxic T cells (CTL), was examined in comparison with concanamycin B (CMB), a specific inhibitor of vacuolar type H+ -ATPase (V-ATPase). PrG and CMB directly inhibited the cytotoxic function of CTL and neutralized acidic organelles of CTL in vitro. In addition, PrG or CMB was injected in C57BL/6 mice after immunization with an allogeneic mastocytoma, P815. PrG and CMB inhibited the killing activity of CTL against the tumor and reduced the population of CD8+ cells without affecting CD4+ and B220+ populations in the spleen. PrG and CMB had only a negligible effect on antibody production induced by sheep red blood cells (SRBC) and mitogenic responses of lymphocytes. These results suggest that PrG and CMB have similar immunosuppressive properties at least through their inhibitory effects on acidification of intracellular organelles required for the effective function of CTL.  相似文献   

8.
 Peripheral blood mononuclear cells (PBMC) from cancer patients were cultured in vitro with irradiated autologous tumor cells isolated from malignant effusions (mixed lymphocyte tumor cultures, MLTC) and low-dose (50 IU/ml) recombinant interleukin-2 (IL-2). The combination of IL-2 and prothymosin α (ProTα) resulted in a greater PBMC-induced response to the autologous tumor than that brought about by IL-2 alone. In particular, ProTα specifically enhanced the CD4+ T-cell-mediated proliferation against the autologous tumor. CD4+ T cells seemed to recognize tumor antigens presented by HLA-DR molecules expressed on the autologous monocytes, since preincubation of the latter with an anti-HLA-DR monoclonal antibody (mAb) abrogated the response. In addition, MLTC set up with IL-2 and ProTα also generated more MHC-class-I-restricted cytotoxic T lymphocytes (CTL) against the autologous tumor than did MLTC set up with IL-2 alone. The MLTC-induced CTL contained high levels of cytoplasmic perforin and their development was strictly dependent on the presence of both autologous CD4+ T cells and monocytes. In the absence of either population there was a strong impairment of both proliferative and cytotoxic responses which was not restored by the presence of ProTα. In contrast, when both cell populations were present, ProTα exerted optimal enhancement of CD4+ T cell proliferation, which was associated with potentiated CTL responses. Our data emphasize the role of ProTα for the enhancement of IL-2-induced CTL responses against autologous tumor cells. Such responses require collaborative interactions between CD4+, CD8+ T cells and monocytes as antigen-presenting cells. Our data are relevant for adoptive immunotherapeutic settings utilizing IL-2 and ProTα-induced autologous-tumor-specific CTL. Received: 2 March 2000 / Accepted: 1 June 2000  相似文献   

9.
 We previously reported [Chakrabarti et al. (1992) Cell Immunol 142:54; 144:455] that, in a murine B lymphoma model 2C3, idiotype (Id)-specific CD8+ cytotoxic T lymphocytes (CTL) are generated in mice following hyperimmunization with irradiated tumor cells, and that they are effective in tumor rejection. The present study reveals that 2C3-specific CTL are also induced in spleens during tumor progression, but are not sustained. At the early stage of tumor growth, the splenic T cells following a 5-day incubation in vitro with killed 2C3 tumor targets, produce high levels of cytokines, namely interleukin-4 (IL-4), IL-10 and interferon γ (IFNγ). Their cytotoxic T lymphocyte (CTL) activity and cytokine levels, except IL-2, sharply decline at the late stage when the mice are increasingly moribund. Although the decline in cytokine level is also evident with CD4+ T cells, a precipitous and concurrent decrease occurs primarily in the IL-4 level with both CD4+ and CD8+ T cells of late-tumor-bearing animals (TBA). Study with the unseparated splenocytes also reveals that sevenfold less IL-4 is produced at the late stage. Furthermore, the cytotoxicity of CTL from late TBA can be effectively restored by addition of supernatants from the splenocyte culture of early TBA, or by IL-4, but not by IFNγ and IL-10. In addition, only IL-4-activated CD8+ T cells from the late TBA are found, by Winn assay, to be protective in vivo. Thus it appears that IL-4, required to sustain antitumor CTL activity, is consumed by T and possibly other cells at the late stage of tumor growth, thereby compromising host immunity against the tumor. We contend that induction or maintenance of protective immunity depends not only on the tumor antigen but also on the specific cytokine milieu in a tumor-bearing host. Received: 8 February 1997 / Accepted: 24 April 1997  相似文献   

10.
《Research in virology》1991,142(2-3):113-118
To analyse the evolution of alveolar-lymphocyte-mediated cytotoxic activity directed against autologous alveolar macrophages (AM), cytotoxic assays against various HIV+ target cells were performed in a cohort of 75 patients with HIV-associated lymphoid interstitial pneumonitis (LIP) studied at distinct stages of HIV infection. Our data confirm that alveolar HIV-specific cytotoxic T lymphocytes (CTL) against AM were detectable before AIDS in patients with CD8+ LIP. Mild CD8+ lymphocytic alveolitis occurs silently in 62% of stage II and III patients with no respiratory symptoms. In these cases, the lack of spontaneous alveolar-lymphocyte-mediated cytotoxic activity against autologous AM may contrast with the detection of primary alveolar CTL specific for HIV proteins such as nef. In AIDS patients, the alveolar CTL lytic efficiency against both AM- and HIV-antigen-expressing cells can be inhibited by a suppressore factor produced by alveolar CD8+ CD57+ cells. Therefore, spontaneous CTL lysis of AM may be (1) limited to a subgroup of patients with active LIP and (2) controlled by distinct mechanisms, including suppressor phenomenons, and HIV replication levels in AM.  相似文献   

11.
The potential value of in vitro cytotoxic T lymphocyte (CTL) assays for predicting the occurrence of graft vs host disease (GVHD) following allogeneic bone marrow transplantation was evaluated in 12 mouse donor-host combinations associated with various degrees of GVHD. These donor-host combinations were selected after evaluation of GVHD triggered by minor histocompatibility antigens (MiHA) in 24 allogeneic strain combinations derived from six strains of H-2 b mice. Recipients (n=475), previously submitted to total body irradiation (9.5 Gy), were transplanted with 107 bone marrow cells along with 5 x 107 spleen cells. While lethal GVHD was observed in half of the strain combinations, it was possible to select 12 donor-host combinations characterized by severe, mild, or absent GVHD. When levels of anti-host CTL activity were assessed following in vivo priming and in vitro boosting, strong CTL-mediated cytotoxicity was observed in all combinations wheteer they developed GVHD or not. CTL frequency measured by limiting dilution analysis (LDA) ranged from 1/16880-1/306. The Spearman rank test revealed no positive correlation between GVHD intensity and donor anti-host CTL activity assayed either in bulk culture experiments or in LDA conditions. These results indicate that MiHA capable of triggering potent CTL responses in vitro do not necessarily initiate GVHD, and that in vitro measurement of donor CTL activity against host-type Con A blasts is not a predictive assay for anti-MiHA GVHD. However, the possibility to recruit CTL populations targeting host MiHA expressed specifically on hematopoietic cells suggests a novel therapeutic strategy for the cure of hematopoietic malignancies. Indeed, transplantation of donor hematopoietic stem cells supplemented with T cells aimed at MiHA specifically expressed by host hematopoietic cells, could possibly potentiate the desirable graft vs leukemia effect without increasing the risk of GVHD.  相似文献   

12.
Melanoma-reactive HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) lines generated in vitro lyse autologous and HLA-matched allogeneic melanoma cells and recognize multiple shared peptide antigens from tyrosinase, MART-1, and Pmel17/gp100. However, a subset of melanomas fail to be lysed by these T cells. In the present report, four different HLA-A*0201+ melanoma cell lines not lysed by melanoma-reactive allogeneic CTL have been evaluated in detail. All four are deficient in expression of the melanocytic differentiation proteins (MDP) tyrosinase, Pmel17/gp100, gp75/trp-1, and MART-1/Melan-A. This concordant loss of multiple MDP explains their resistance to lysis by melanoma-reactive allogeneic CTL and confirms that a subset of melanomas may be resistant to tumor vaccines directed against multiple MDP-derived epitopes. All four melanoma lines expressed normal levels of HLA-A*0201, and all were susceptible to lysis by xenoreactive-peptide-dependent HLA-A*0201-specific CTL clones, indicating that none had identifiable defects in antigen-processing pathways. Despite the lack of shared MDP-derived antigens, one of these MDP-negative melanomas, DM331, stimulated an effective autologous CTL response in vitro, which was restricted to autologous tumor reactivity. MHC-associated peptides isolated by immunoaffinity chromatography from HLA-A1 and HLA-A2 molecules of DM331 tumor cells included at least three peptide epitopes recognized by DM331 CTL and restricted by HLA-A1 or by HLA-A*0201. Recognition of these CTL epitopes cannot be explained by defined, shared melanoma antigens; instead, unique or undefined antigens must be responsible for the autologous-cell-specific anti-melanoma response. These findings suggest that immunotherapy directed against shared melanoma antigens should be supplemented with immunotherapy directed against unique antigens or other undefined antigens, especially in patients whose tumors do not express MDP. Received: 31 October 1997 / Accepted: 4 August 1999  相似文献   

13.
14.
We have investigated the mechanisms involved in the clearance of viral infection at the epithelium level by analyzing the activity of influenza virus-specific cytotoxic T lymphocytes (CTL) against virus-infected CMT-93 intestinal epithelial cells. Epithelial cells infected with live influenza virus effectively present viral antigens and were lysed by both homotypic and heterotypic influenza virus-specific CD8+ T cells. These results shed new light on the control of viral infection through the elimination of virus-infected epithelial cells by virus-specific CTL and demonstrate that CMT-93 cells furnish an appropriate model for in vitro evaluation of CTL activity against virus-infected epithelial cells.  相似文献   

15.
HLA-DR-restricted CD4+ cytotoxic T-lymphocyte (CTL) lines specific for Toxoplasma gondii (T. gondii)-infected melanoma cells have been established from peripheral blood lymphocytes (PBLs) of a patient with chronic toxoplasmosis. The role of heat shock cognate protein (HSC) 71 in antigen (Ag) processing and presentation of T. gondii-infected melanoma cells to these CD4+ CTL lines was investigated. A human melanoma cell line (P36) pulsed with T. gondii-infected P36 cell-derived HSC71 was lysed by a T. gondii-specific CD4+ CTL line (Tx-HSC-1). The Tx-HSC-1 also killed T. gondii-infected P36 cells. The lytic activity of Tx-HSC-1 against P36 cells pulsed with T. gondii-infected P36 cell-derived HSC71 was inhibited by monoclonal antibodies (mAbs) against HSC71. Anti-human leukocyte antigen (HLA)-DR mAb also partially blocked the lytic activity, whereas anti-HLA-A,B,C mAb did not block the lytic activity. In addition, a flow cytometric analysis with these specific mAbs against HSC71 showed HSC71 to be expressed on the cell surface of T. gondii-infected P36 cells as well as uninfected P36 cells. These data indicate that HSC71 molecules are expressed on human melanoma cell line P36, and that HSC71 may play a potential role in Ag presentation and processing of T. gondii-infected P36 cells to CD4+ CTL.  相似文献   

16.
Clinical tumor remissions after adoptive T-cell therapy are frequently not durable due to limited survival and homing of transfused tumor-reactive T cells, what can be mainly attributed to the long-term culture necessary for in vitro expansion. Here, we introduce an approach allowing the reliable in vitro generation of leukemia-reactive cytotoxic T lymphocytes (CTLs) from naive CD8+ T cells of healthy donors, leading to high cell numbers within a relatively short culture period. The protocol includes the stimulation of purified CD45RA+ CD8+ T cells with primary acute myeloid leukemia blasts of patient origin in HLA-class I-matched allogeneic mixed lymphocyte-leukemia cultures. The procedure allowed the isolation of a large diversity of HLA-A/-B/-C-restricted leukemia-reactive CTL clones and oligoclonal lines. CTLs showed reactivity to either leukemia blasts exclusively, or to leukemia blasts as well as patient-derived B lymphoblastoid-cell lines (LCLs). In contrast, LCLs of donor origin were not lysed. This reactivity pattern suggested that CTLs recognized leukemia-associated antigens or hematopoietic minor histocompatibility antigens. Consistent with this hypothesis, most CTLs did not react with patient-derived fibroblasts. The efficiency of the protocol could be further increased by addition of interleukin-21 during primary in vitro stimulation. Most importantly, leukemia-reactive CTLs retained the expression of early T-cell differentiation markers CD27, CD28, CD62L and CD127 for several weeks during culture. The effective in vitro expansion of leukemia-reactive CD8+ CTLs from naive CD45RA+ precursors of healthy donors can accelerate the molecular definition of candidate leukemia antigens and might be of potential use for the development of adoptive CTL therapy in leukemia.  相似文献   

17.
 Determinants of T cell responses to tumor cells remain largely unknown. In the present study we have used long-term cultures of human melanoma cells and autologous peripheral blood lymphocytes to examine the influence of cytokines with T cell growth activity on the phenotype and cytotoxic and proliferative response of T cells to melanoma. It was found that addition of interleukin-4 (IL-4) inhibited the response of CD8+ T cells and promoted the response of the CD4 subset. IL-2 or IL-7 was effective in increasing melanoma-specific cytotoxic T lymphocyte (CTL) activity in cultures where CD8 T cells were predominant, whereas IL-4 followed by IL-2 was most effective in cultures where CD4 T cells predominated. IL-10 or IL-12 inhibited proliferation and CTL activity against melanoma in long-term cultures. The effects of IL-12 were reproduced in long-term cultures of T cells stimulated with mAb against CD3 and were shown to depend on prior exposure of T cells to IL-12 before IL-2. As yet unidentified factors, such as co-factor expression on melanoma, appear to be as important as exogenous cytokines in determining the nature of T cell responses to melanoma. These results suggest that analysis of responses in long-term culture may assist in defining the role of key cytokines and other determinants of immune responses to melanoma. Received: 4 June 1996 / Accepted: 12 November 1996  相似文献   

18.
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) αβ+ CD4 CD8 double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo. A. Mackensen and K. Fischer contributed equally to this work and should be considered joint senior authors. This work was supported by the Deutsche Forschungsgemeinschaft (MA 1351/5-1, KFO 146) and NIH grants CA90873, CA102280, 104947 (MIN). Companion paper: “Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition” by Tamson V. Moore et al. doi: .  相似文献   

19.
 The DNA from human papillomavirus (HPV) can be detected in 90% of cervical carcinomas. To address whether patients infected with HPV can mount efficient T cell responses to this pathogen we examined the cytotoxic T lymphocyte (CTL) response of peripheral blood mononuclear cells (PBMC) from patients with abnormal genital epithelial cells. PBMC from 11 HLA-A2+ patients were stimulated with CaSki, a cervical carcinoma cell line that is HPV 16+ and HLA-A2+. The CTL were screened for reactivity to the cervical carcinoma cell line C33A (HPV – , HLA-A2+) transfected with the HPV 16 E6 or E7 genes or the plasmid without insert. The CTL of 1 patient showed particularly strong CaSki and HPV E6 or E7 protein-specific cytotoxicity in a HLA-A2-restricted fashion. In contrast, these CTL lysed neither a vector-only transfectant, the natural killer cell (NK) target, K562 nor the lymphokine-activated killer cell (LAK) target, Daudi. HLA-A2 restriction was demonstrated by the lack of recognition of a HLA-A2 –  CaSki cell line developed in our laboratory. The CTL line was cloned and 99 clones were harvested and screened; 51 clones lysed CaSki, of which 17 did not lyse the A2 –  CaSki. Of these HLA-A2 –  restricted clones, 8 did not lyse C33A transfectants, 6 lysed all C33A transfectants, 3 lysed C33A-E7 only and none lysed C33A-E6 only. These data imply that, within the bulk CTL line, HLA-A2-restricted recognition of antigens was restricted to CaSki antigens, antigens common to cervical carcinoma (CaSki plus C33A), or HPV-16-E7-derived antigen on the clonal level. The E7-restricted clones were negative for recognition of known HLA-A2-binding peptides from E7. Received: 16 November 1995 / Accepted: 15 January 1996  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号