首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Li  Y Lin  R M Heath  M X Zhu    Z Yang 《The Plant cell》1999,11(9):1731-1742
We have shown that Rop1At, a pollen-specific Rop GTPase that is a member of the Rho family of small GTP binding proteins, acts as a key molecular switch controlling tip growth in Arabidopsis pollen tubes. Pollen-specific expression of constitutively active rop1at mutants induced isotropic growth of pollen tubes. Overexpression of wild-type Arabidopsis Rop1At led to ectopic accumulation of Rop1At in the plasma membrane at the tip and caused depolarization of pollen tube growth, which was less severe than that induced by the constitutively active rop1at. These results indicate that both Rop1At signaling and polar localization are critical for controlling the site of tip growth. Dominant negative rop1at mutants or antisense rop1at RNA inhibited tube growth at 0.5 mM extracellular Ca(2+), but growth inhibition was reversed by higher extracellular Ca(2+). Injection of anti-Rop antibodies disrupted the tip-focused intracellular Ca(2+) gradient known to be crucial for tip growth. These studies provide strong evidence for a Rop GTPase-dependent tip growth pathway that couples the control of growth sites with the rate of tip growth through the regulation of tip-localized extracellular Ca(2+) influxes and formation of the tip-high intracellular Ca(2+) gradient in pollen tubes.  相似文献   

2.
Plants have evolved distinct mechanisms to link Rho-type (Rop) GTPases to downstream signaling pathways as compared to other eukaryotes. Here, experimental data are provided that members of the Medicago, as well as Arabidopsis, receptor-like cytoplasmic kinase family (RLCK Class VI) were strongly and specifically activated by GTP-bound Rop GTPases in vitro. Deletion analysis indicated that the residues implicated in the interaction might be distributed on various parts of the kinases. Using a chimaeric Rop GTPase protein, the importance of the Rho-insert region in kinase activation could also be verified. These data strengthen the possibility that RLCKs may serve as Rop GTPase effectors in planta.  相似文献   

3.
Polarized Rac/Rop GTPase signaling plays a key role in polar cell growth, which is essential for plant morphogenesis. The molecular and cellular mechanisms responsible for the polarization of Rac/Rop signaling during polar cell growth are only partially understood. Mutant variants of Rac/Rop GTPases lacking specific functions are important tools to investigate these mechanisms, and have been employed to develop a model suggesting that RhoGAP (GTPase activating protein) and RhoGDI (Guanine Nucleotide Dissociation Inhibitor) mediated recycling of Rac/Rop GTPases maintains apical polarization of Rac/Rop activity in pollen tubes, which elongate by ‘tip growth’ (an extreme form of polar cell growth). Despite the importance of these mutant variants for Rac/Rop functional characterization, their distinct intracellular distributions have not been thoroughly comparatively and quantitatively analyzed. Furthermore, support for the proposed RhoGAP and RhoGDI functions in apical polarization of Rac/Rop activity based on the analysis of in vivo interactions between these proteins and Rac/Rop GTPases has been missing. Here, extensive fluorescent protein tagging and bimolecular fluorescence complementation (BiFC) analyses are described of the intracellular distributions of wild type and mutant variants of the tobacco pollen tube Rac/Rop GTPase Nt‐Rac5, as well as of interactions of these Nt‐Rac5 variants with RhoGAP and RhoGDI proteins, in normally growing transiently transformed pollen tubes. Presented results substantially enhance our understanding of apical dynamics of pollen tube Rac/Rop signaling proteins, confirm previously proposed RhoGAP and RhoGDI functions in Rac/Rop polarization and provide important technical insights facilitating future in vivo protein localization and BiFC experiments in pollen tubes.  相似文献   

4.
Cytoskeleton assembly plays an important role in determining cotton fiber cell length and morphology and is developmentally regulated. As in other plant cells, it is not clear how cytoskeletal assembly in fibers is regulated. Recently, several Rac/Rop GTPases in Arabidopsis were shown to regulate isotropic and polar cell growth of root hairs and pollen tubes by controlling assembly of the cytoskeleton. GhRac1, isolated from cottonseeds, is a member of the Rac/Rop GTPase family and is abundantly expressed in rapidly growing cotton tissues. GhRac1 shows the greatest sequence similarity to the group IV subfamily of Arabidopsis Rac/Rop genes. Overexpression of GhRac1 in E. coli led to the production of a functional GTPase as shown by in vitro enzyme activity assay. In contrast to other Rac/Rop GTPases found in cotton fiber, GhRac1 is highly expressed during the elongation stage of fiber development with expression decreasing dramatically when the rate of fiber elongation declines. The association of highest GhRac1 expression during stages of maximal cotton fiber elongation suggests that GhRac1 GTPase may be a potential regulator of fiber elongation by controlling cytoskeletal assembly.  相似文献   

5.
Lin Y  Wang Y  Zhu JK  Yang Z 《The Plant cell》1996,8(2):293-303
The Rho family GTPases function as key molecular switches, controlling a variety of actin-dependent cellular processes, such as the establishment of cell polarity, cell morphogenesis, and movement in diverse eukaryotic organisms. A novel subfamily of Rho GTPases, Rop, has been identified in plants. Protein gel blot and RNA gel blot hybridization analyses indicated that one of these plant Rho GTPases, Rop1, is expressed predominantly in the male gametophyte (pollen and pollen tubes). Cell fractionation analysis of pollen tubes showed that Rop is partitioned into soluble and particulate fractions. The particulate Rop could be solubilized with detergents but not with salts, indicating that it is tightly bound to membranes. The membrane association appears to result from membrane anchoring via a geranylgeranyl group because an in vitro isoprenylation assay demonstrated that Rop1Ps is geranylgeranylated. Subcellular localization, using indirect immunofluorescence and confocal microscopy, showed that Rop is highly concentrated in the cortical region of the tube apex and in the periphery of the generative cell. The cortical Rop protein at the apex forms a gradient with decreasing concentration from tip to base and appears to be associated with the plasma membrane. These results suggest that the apical Rop GTPase may be involved in the signaling mechanism that controls the actin-dependent tip growth of pollen tubes. Localization of the Rop GTPase to the periphery of the generative cell is analogous to that of myosin, suggesting that the Rop GTPase plays an important role in the modulation of an actomyosin motor system involved in the movement of the generative cell.  相似文献   

6.
7.
Rop, the small GTPase of the Rho family in plants, is believed to exert molecular control over dynamic changes in the actin cytoskeleton that affect pollen tube elongation characteristics. In the present study, microinjection of Rop1Ps was used to investigate its effects on tip growth and evidence of interaction with the actin cytoskeleton in lily pollen tubes. Microinjected wild type WT-Rop1Ps accelerated pollen tube elongation and induced actin bundles to form in the very tip region. In contrast, microinjected dominant negative DN-rop1Ps had no apparent effect on pollen tube growth or microfilament organization, whereas microinjection of constitutively active CA-rop1Ps induced depolarized growth and abnormal pollen tubes in which long actin bundles in the shank of the tube were distorted. Injection of phalloidin, a potent F-actin stabilizer that inhibits dynamic changes in the actin cytoskeleton, prevented abnormal growth of the tubes and suppressed formation of distorted actin bundles. These results indicate that Rop1Ps exert control over important aspects of tip morphology involving dynamics of the actin cytoskeleton that affect pollen tube elongation. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Targeted delivery of immotile sperm through growing pollen tubes is a crucial step in achieving sexual reproduction in angiosperms. Unlike diffuse-growing cells, the growth of a pollen tube is restricted to the very apical region where targeted exocytosis and regulated endocytosis occur. The plant-specific Rho GTPases, Rops, are central organizers for pollen tube polarity. Through effector binding, Rops regulate the tip-focused Ca2+ gradient and the actin cytoskeleton during pollen tube growth. Therefore, understanding the spatiotemporal regulation of Rop activity would reveal how establishment and maintenance of tube polarity as well as re-orientation of the growth axis are accomplished. Recent findings indicated that two feedback loops may be fundamental in maintaining a fine-tuned and dynamic Rop activity. The concerted activities of RopGAP and RopGDI prevent lateral diffusion of activated Rop, restricting Rop activity to the apical plasma membrane. Conversely, pollen receptor kinases (PRKs) and RopGEFs positively feedback regulate Rop activity through protein binding and membrane recruitment. Feedback loops would also be essential for pollen tube re-orientation. Shallow extracellular cues amplified by concerted activities of feedback loops would lead to asymmetric activation of Rop and result in tube re-orientation.Key words: Rho GTPases, Rop, GEF, GAP, GDI, receptor kinase, feedback loop  相似文献   

9.
Pollen tube growth relies on an extremely fast delivery of new membrane and wall material to the apical region where growth takes place. Despite the obvious meaning of this fact, the mechanisms that control this process remain very much unknown. It has previously been shown that apical growth is regulated by cytosolic free calcium ([Ca(2+)](c)) so it was decided to test how changes in [Ca(2+)](c) affect endo/exocytosis in pollen tube growth and reorientation. The endo/exocytosis was assayed in living cells using confocal imaging of FM 1-43. It was found that growing pollen tubes exhibited a higher endo/exocytosis activity in the apical region whereas in non-growing cells FM 1-43 is uniformly distributed. During pollen tube reorientation, a spatial redistribution of exocytotic activity was observed with the highest fluorescence in the side to which the cell will bend. Localized increases in [Ca(2+)](c) induced by photolysis of caged Ca(2+) increased exocytosis. In order to find if [Ca(2+)](c) changes were modulating endo/exocytosis directly or through a signalling cascade, tests were conducted to find how changes in GTP levels and GTPase activity (primary regulators of the secretory pathway) affect the apical [Ca(2+)](c) gradient and endo/exocytosis. It was found that increases in GTP levels could promote exocytosis (and growth). Interestingly, the increase in [GTP] did not significantly affect [Ca(2+)](c) distribution, thus suggesting that the apical endo/exocytosis is regulated in a concerted but differentiated manner by the Ca(2+) gradient and the activity of GTPases. Rop GTPases are likely candidates to mediate the Ca(2+)/GTP cross-talk as shown by knock-down experiments in growing pollen tubes.  相似文献   

10.
Wu G  Li H  Yang Z 《Plant physiology》2000,124(4):1625-1636
The plant-specific Rop subfamily of Rho GTPases, most closely related to the mammalian Cdc42 and Rac GTPases, plays an important role in the regulation of calcium-dependent pollen tube growth, H(2)O(2)-mediated cell death, and many other processes in plants. In a search for Rop interactors using the two-hybrid method, we identified a family of Rho GTPase-activating proteins (GAP) from Arabidopsis, termed RopGAPs. In addition to a GAP catalytic domain, RopGAPs contain a Cdc42/Rac-interactive binding (CRIB) motif known to allow Cdc42/Rac effector proteins to bind activated Cdc42/Rac. This novel combination of a GAP domain with a CRIB motif is widespread in higher plants and is unique to the regulation of the Rop GTPase. A critical role for CRIB in the regulation of in vitro RopGAP activity was demonstrated using point and deletion mutations. Both types of mutants have drastically reduced capacities to stimulate the intrinsic Rop GTPase activity and to bind Rop. Furthermore, RopGAPs preferentially stimulate the GTPase activity of Rop, but not Cdc42 in a CRIB-dependent manner. In vitro binding assays show that the RopGAP CRIB domain interacts with GTP- and GDP-bound forms of Rop, as well as the transitional state of Rop mimicked by aluminum fluoride. The CRIB domain also promotes the association of the GAP domain with the GDP-bound Rop, as does aluminum fluoride. These results reveal a novel CRIB-dependent mechanism for the regulation of the plant-specific family of Rho GAPs. We propose that the CRIB domain facilitates the formation of or enhanced GAP-mediated stabilization of the transitional state of the Rop GTPase.  相似文献   

11.
Rac/Rop-type Rho-family small GTPases accumulate at the plasma membrane in the tip of pollen tubes and control the polar growth of these cells. Nt-RhoGDI2, a homolog of guanine nucleotide dissociation inhibitors (GDIs) regulating Rho signaling in animals and yeast, is co-expressed with the Rac/Rop GTPase Nt-Rac5 specifically in tobacco (Nicotiana tabacum) pollen tubes. The two proteins interact with each other in yeast two-hybrid assays, preferentially when Nt-Rac5 is prenylated. Transient over-expression of Nt-Rac5 and Nt-RhoGDI2 depolarized or inhibited tobacco pollen tube growth, respectively. Interestingly, pollen tubes over-expressing both proteins grew normally, demonstrating that the two proteins functionally interact in vivo. Nt-RhoGDI2 was localized to the pollen tube cytoplasm and effectively transferred co-over-expressed YFP-Nt-Rac5 fusion proteins from the plasma membrane to this compartment. A single amino acid exchange (R69A), which abolished binding to Nt-RhoGDI2, caused Nt-Rac5 to be mis-localized to the flanks of pollen tubes and strongly compromised its ability to depolarize pollen tube growth upon over-expression. Based on these observations, we propose that Nt-RhoGDI2-mediated recycling of Nt-Rac5 from the flanks of the tip to the apex has an essential function in the maintenance of polarized Rac/Rop signaling and cell expansion in pollen tubes. Similar mechanisms may generally play a role in the polarized accumulation of Rho GTPases in specific membrane domains, an important process whose regulation has not been well characterized in any cell type to date.  相似文献   

12.
Chen CY  Cheung AY  Wu HM 《The Plant cell》2003,15(1):237-249
Pollen tube elongation is a rapid tip growth process that is driven by a dynamic actin cytoskeleton. A ubiquitous family of actin binding proteins, actin-depolymerizing factors (ADFs)/cofilins, bind to actin filaments, induce severing, enhance depolymerization from their slow-growing end, and are important for maintaining actin dynamics in vivo. ADFs/cofilins are regulated by multiple mechanisms, among which Rho small GTPase-activated phosphorylation at a terminal region Ser residue plays an important role in regulating their actin binding and depolymerizing activity, affecting actin reorganization. We have shown previously that a tobacco pollen-specific ADF, NtADF1, is important for maintaining normal pollen tube actin cytoskeleton organization and growth. Here, we show that tobacco pollen grains accumulate phosphorylated and nonphosphorylated forms of ADFs, suggesting that phosphorylation could be a regulatory mechanism for their activity. In plants, Rho-related Rac/Rop GTPases have been shown to be important regulators for pollen tube growth. Overexpression of Rac/Rop GTPases converts polar growth into isotropic growth, resulting in pollen tubes with ballooned tips and a disrupted actin cytoskeleton. Using the Rac/Rop GTPase-induced defective pollen tube phenotype as a functional assay, we show that overexpression of NtADF1 suppresses the ability of NtRac1, a tobacco Rac/Rop GTPase, to convert pollen tube tip growth to isotropic growth. This finding suggests that NtADF1 acts in a common pathway with NtRac1 to regulate pollen tube growth. A mutant form of NtADF1 with a nonphosphorylatable Ala substitution at its Ser-6 position [NtADF1(S6A)] shows increased activity, whereas the mutant NtADF1(S6D), which has a phospho-mimicking Asp substitution at the same position, shows reduced ability to counteract the effect of NtRac1. These observations suggest that phosphorylation at Ser-6 of NtADF1 could be important for its integration into the NtRac1 signaling pathway. Moreover, overexpression of NtRac1 diminishes the actin binding activity of green fluorescent protein (GFP)-NtADF1 but has little effect on the association of GFP-NtADF1(S6A) with actin cables in pollen tubes. Together, these observations suggest that NtRac1-activated activity regulates the actin binding and depolymerizing activity of NtADF1, probably via phosphorylation at Ser-6. This notion is further supported by the observation that overexpressing a constitutively active NtRac1 in transformed pollen grains significantly increases the ratio of phosphorylated to nonphosphorylated ADFs. Together, the observations reported here strongly support the idea that NtRac1 modulates NtADF1 activity through phosphorylation at Ser-6 to regulate actin dynamics.  相似文献   

13.
The Rop GTPase switch controls multiple developmental processes in Arabidopsis   总被引:21,自引:0,他引:21  
Li H  Shen JJ  Zheng ZL  Lin Y  Yang Z 《Plant physiology》2001,126(2):670-684
G proteins are universal molecular switches in eukaryotic signal transduction. The Arabidopsis genome sequence reveals no RAS small GTPase and only one or a few heterotrimeric G proteins, two predominant classes of signaling G proteins found in animals. In contrast, Arabidopsis possesses a unique family of 11 Rop GTPases that belong to the Rho family of small GTPases. Previous studies indicate that Rop controls actin-dependent pollen tube growth and H(2)O(2)-dependent defense responses. In this study, we tested the hypothesis that the Rop GTPase acts as a versatile molecular switch in signaling to multiple developmental processes in Arabidopsis. Immunolocalization using a general antibody against the Rop family proteins revealed a ubiquitous distribution of Rop proteins in all vegetative and reproductive tissues and cells in Arabidopsis. The cauliflower mosaic virus 35S promoter-directed expression of constitutively active GTP-bound rop2 (CA-rop2) and dominant negative GDP-bound rop2 (DN-rop2) mutant genes impacted many aspects of plant growth and development, including embryo development, seed dormancy, seedling development, lateral root initiation, morphogenesis of lateral organs in the shoot, shoot apical dominance and growth, phyllotaxis, and lateral organ orientation. The rop2 transgenic plants also displayed altered responses to the exogenous application of several hormones, such as abscisic acid-mediated seed dormancy, auxin-dependent lateral shoot initiation, and brassinolide-mediated hypocotyl elongation. CA-rop2 and DN-rop2 expression had opposite effects on most of the affected processes, supporting a direct signaling role for Rop in regulating these processes. Based on these observations and previous results, we propose that Rop2 and other members of the Rop family participate in multiple distinct signaling pathways that control plant growth, development, and responses to the environment.  相似文献   

14.
Klahre U  Kost B 《The Plant cell》2006,18(11):3033-3046
Regulation by Rho-type small GTPases, such as RAC5, is important for the maintenance of polarity in tobacco (Nicotiana tabacum) pollen tubes. We previously showed that RhoGDI2 is necessary for RAC5 localization. Here, we describe the GTPase activating protein RhoGAP1 that controls the area of RAC5 activity. RhoGAP1 N-terminal and CRIB (for Cdc42/Rac-interactive binding) domains are both necessary for targeting yellow fluorescent protein-RhoGAP1 fusions to the plasma membrane close to, but not in, pollen tube apices. We propose that this localization restricts apical Rho-type GTPase activity from spreading toward the flanks, which ensures the maintenance of RAC signaling at the apex. The CRIB domain is not required but enhances in vitro RhoGAP1 activity toward the pollen tube-specific-RAC5. A mutation reducing GAP activity of RhoGAP1 leads to ballooning pollen tubes resembling those overexpressing RAC5. To ascertain the specific targeting mechanism of RhoGAP1, we isolated a 14-3-3 protein interacting with RhoGAP1. When overexpressed with RhoGAP1, it counteracts the growth-retarding effect of RhoGAP1 overexpression and attenuates RhoGAP1 membrane localization but, overexpressed alone, induces only small architectural changes. We propose that inactivation of RAC5 by the subapically localized RhoGAP1, together with dynamic relocalization of inactivated RAC5 from flanks to tip by RhoGDI2, leads to spatial restriction of RAC5 to pollen tube apices, thereby sustaining polar growth.  相似文献   

15.
蛋白质可逆磷酸化对花粉管生长的调控作用   总被引:1,自引:0,他引:1  
索金伟  戴绍军 《遗传》2014,36(8):766-778
花粉管极性生长受多种信号与代谢过程的调控,主要包括Rop GTPase信号途径、磷脂酰肌醇信号通路、Ca2+信号途径、肌动蛋白动态变化、囊泡运输、细胞壁重塑等,这些过程都受到蛋白质可逆磷酸化作用的调节。如:(1) Rop调节蛋白(GEF、GDI和GAP)的可逆磷酸化可以改变其活性,从而调节Rop GTPase;同时,蛋白激酶还可能作为Rop下游的效应器分子参与Rop下游信号途径的调节;(2) 蛋白质可逆磷酸化作用既能够激活/失活质膜上的Ca2+通道或Ca2+泵,又参与调节胞内贮存Ca2+的释放,从而调控花粉管尖端Ca2+梯度的形成;此外,蛋白激酶还作为Ca2+信号的感受器,磷酸化相应的靶蛋白,参与Ca2+信号下游途径的调节;(3) 肌动蛋白结合蛋白(ADF和Profilin)的活性也受到蛋白质可逆磷酸化的调节,进而调控肌动蛋白聚合与解聚之间的动态平衡;(4) 蛋白质磷酸化作用调节胞吞/胞吐相关蛋白的活性,并调控质膜的磷脂代谢,从而参与调控囊泡运输过程;(5) 胞质丝氨酸/苏氨酸蛋白激酶和蔗糖合酶的可逆磷酸化可以调节其在花粉管中的功能与分布模式,参与花粉管细胞壁重塑;(6) 转录调节蛋白与真核生物翻译起始因子的可逆磷酸化可以改变其活性,从而调控RNA转录与蛋白质合成。文章主要综述了花粉管生长过程中重要蛋白质的可逆磷酸化作用对上述关键事件的调节。  相似文献   

16.
Fu Y  Wu G  Yang Z 《The Journal of cell biology》2001,152(5):1019-1032
Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein-tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized F-actin in tobacco pollen tubes, termed short actin bundles (SABs). The dynamics of SABs during polar growth in pollen tubes is regulated by Rop1At, a Rop GTPase belonging to the Rho family. When overexpressed, Rop1At transformed SAB into a network of fine filaments and induced a transverse actin band behind the tip, leading to depolarized growth. These changes were due to ectopic Rop1At localization to the apical region of the plasma membrane and were suppressed by guanine dissociation inhibitor overexpression, which removed ectopically localized Rop1At. Rop GTPase-activating protein (RopGAP1) overexpression, or Latrunculin B treatments, also recovered normal actin organization and tip growth in Rop1At-overexpressing tubes. Moreover, overexpression of RopGAP1 alone disrupted SABs and inhibited growth. Finally, SAB oscillates and appears at the tip before growth. Together, these results indicate that the dynamics of tip actin are essential for tip growth and provide the first direct evidence to link Rho GTPase to actin organization in controlling cell polarity and polar growth in plants.  相似文献   

17.
Jones MA  Shen JJ  Fu Y  Li H  Yang Z  Grierson CS 《The Plant cell》2002,14(4):763-776
Root hairs provide a model system for the study of cell polarity. We examined the possibility that one or more members of the distinct plant subfamily of RHO monomeric GTPases, termed Rop, may function as molecular switches regulating root hair growth. Specific Rops are known to control polar growth in pollen tubes. Overexpressing Rop2 (Rop2 OX) resulted in a strong root hair phenotype, whereas overexpressing Rop7 appeared to inhibit root hair tip growth. Overexpressing Rops from other phylogenetic subgroups of Rop did not give a root hair phenotype. We confirmed that Rop2 was expressed throughout hair development. Rop2 OX and constitutively active GTP-bound rop2 (CA-rop2) led to additional and misplaced hairs on the cell surface as well as longer hairs. Furthermore, CA-rop2 depolarized root hair tip growth, whereas Rop2 OX resulted in hairs with multiple tips. Dominant negative GDP-bound Rop2 reduced the number of hair-forming sites and led to shorter and wavy hairs. Green fluorescent protein-Rop2 localized to the future site of hair formation well before swelling formation and to the tip throughout hair development. We conclude that the Arabidopsis Rop2 GTPase acts as a positive regulatory switch in the earliest visible stage in hair development, swelling formation, and in tip growth.  相似文献   

18.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

19.
In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two-hybrid screening we have found three previously uncharacterized receptor-like protein kinases to be Rop GTPase-interacting molecules: a cysteine-rich receptor kinase, named NCRK, and two receptor-like cytosolic kinases from the Arabidopsis RLCK-VIb family, named RBK1 and RBK2. Uniquely for Rho-family small GTPases, plant Rop GTPases were found to interact directly with the protein kinase domains. Rop4 bound NCRK preferentially in the GTP-bound conformation as determined by flow cytometric fluorescence resonance energy transfer measurements in insect cells. The kinase RBK1 did not phosphorylate Rop4 in vitro , suggesting that the protein kinases are targets for Rop signalling. Bimolecular fluorescence complementation assays demonstrated that Rop4 interacted in vivo with NCRK and RBK1 at the plant plasma membrane. In Arabidopsis protoplasts, NCRK was hyperphosphorylated and partially co-localized with the small GTPase RabF2a in endosomes. Gene expression analysis indicated that the single-copy NCRK gene was relatively upregulated in vasculature, especially in developing tracheary elements. The seven Arabidopsis RLCK-VIb genes are ubiquitously expressed in plant development, and highly so in pollen, as in case of RBK2 . We show that the developmental context of RBK1 gene expression is predominantly associated with vasculature and is also locally upregulated in leaves exposed to Phytophthora infestans and Botrytis cinerea pathogens. Our data indicate the existence of cross-talk between Rop GTPases and specific receptor-like kinases through direct molecular interaction.  相似文献   

20.
Sheng X  Hu Z  Lü H  Wang X  Baluska F  Samaj J  Lin J 《Plant physiology》2006,141(4):1578-1590
The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and beta-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号