首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrous iron cations Fe(II) can effectively bind to the donor side of the manganese-depleted photosystem II (PSII(-Mn)) and in this way block electron transfer from diphenylcarbazide (DPC) to the major donor for P680, YZ. The present study was focused on the characteristic features of this process. The oxidation and subsequent binding of Fe(II) cations to PSII(-Mn) may proceed in the absence of an artificial electron acceptor, and therefore we investigated the role of O2 as a putative endogenous acceptor. Oxygen was shown to participate in the blockade of YZ by Fe cations, apparently as a structural element of Fe cluster formed at the donor side of PSII(-Mn). The kinetic study of blocking YZ by Fe(II) as dependent on light intensity demonstrated that the quantum efficiency of Fe cations binding to the donor side of PSII(-Mn) considerably exceeded that of Mn cations. We also compared the possibilities of extracting the native Mn cluster and reconstructed Fe cations from PSII and an alternative electron transport from DPC to P680+ under the conditions of the YZ blockade by Fe cations. Neither an alternative donor for P680, YD , nor cytochrome b 559 participated in the latter process. As a whole, our evidence shows that many features of binding Fe cation to the donor side of PSII(-Mn) are in common with photoassembling the Mn cluster.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 12–20.Original Russian Text Copyright © 2005 by Lovyagina, Davletshina, Kultysheva, Timofeev, Ivanov, Semin.  相似文献   

2.
Oxygen and NO binding constants are reported for Fe(Por)(B) [1] complexes. The results show a good correlation between O2 and NO affinities, and this is attributed to the similar bent structures of the FeOO and FeNO moieties. Evidence is presented to show that iron(II) C3-capped porphyrins have a low affinity for O2 because of ligand coordination on the cavity side of the cap.  相似文献   

3.
Solution properties of three manganese porphyrins, in monomeric form, were investigated. These were the 'picket-fence-like' porphyrin Mn(III)-alpha,alpha,alpha,beta- tetra-ortho(N-methylisonicotinamidophenyl)porphyrin (Mn(III)PFP) and two 'planar unhindered' porphyrins, the Mn(III)TMPyP (tetrakis (4-N-methylpyridyl)porphyrin) and Mn(III)TAP (tetra(4-N,N,N-trimethylanilinium)porphyrin). The porphyrin properties studied were: the absorption spectra in their manganic and manganous forms; acid/base properties of the aquo complexes; the effect of potential axial ligands (up to a concentration of 0.1 mol dm-3) and their one electron reduction potentials. Knowing these properties, the reaction of the Mn(III) porphyrins with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the Mn(III) porphyrins, which governs the catalytic efficiency of the metalloporphyrins upon the disproportionation of the superoxide radical, was 5.1 X 10(7) to 4.0 X 10(5) dm3 mol-1 s-1, depending on the pH and the nature of the metalloporphyrin. These values are at least one order of magnitude lower than found for Fe(III)TMPyP. One electron reduction of the three Mn(III) porphyrins by eaq-, CO2-, CH2OH and (CH3)2COH had similar second-order rate constants (10(9)-10(10) dm3 mol-1 s-1). That for (CH3)2(CH2)COH was about 10(5) dm3 mol-1 s-1. Reduction in all cases produced the corresponding Mn(II) porphyrin and no intermediate was found. The oxidation reaction of the Mn(II) porphyrins by O2- was approximately two orders of magnitude faster when compared to the reduction of Mn(III) porphyrins with the same radical. Since the reactivities of O2- towards the three manganese (III) compounds follow their reduction potentials, it is suggested that these reactions are governed by an outer-sphere mechanism. This suggestion is corroborated by the finding that water molecules acting as axial ligands, in these aqueous solution systems, are not replaced by another potential ligand when the latter is in the concentration range of 100 mM or less.  相似文献   

4.
Diiron(II) complexes with a novel dinucleating polypyridine ligand, N,N,N',N'-tetrakis(6-pivalamido-2-pyridylmethyl)-1,3-diaminopropan-2-ol (HTPPDO), were synthesized as functional models of hemerythrin. Structural characterization of the complexes, [Fe2II(Htppdo)(PhCOO)](ClO4)3 (1), [Fe2II(Htppdo)((p-Cl)PhCOO)](ClO4)3 (2), [Fe2II(Htppdo)((p-Cl)PhCOO)](BF4)3 (2') and [Fe2II(tppdo)((p-Cl)PhCOO)](ClO4)2 (3), were accomplished by electronic absorption, and IR spectroscopic, electrochemical, and X-ray diffraction methods. The crystal structures of 1 and 2' revealed that the two iron atoms are asymmetrically coordinated with HTPPDO and bridging benzoate. One of the iron centers (Fe(1)) has a seven-coordinate capped octahedral geometry comprised of an N3O4 donor set which includes the propanol oxygen of HTPPDO. The other iron center (Fe(2)) forms an octahedron with an N3O3 donor set and one vacant site. The two iron atoms are bridged by benzoate (1) or p-chlorobenzoate (2). On the other hand, both Fe atoms of complex 3 are both symmetrically coordinated with N3O4 donors and two bridging ligands; benzoate and the propanolate of TPPDO. Reactions of these complexes with dioxygen were followed by electronic absorption, resonance Raman and ESR spectroscopies. Reversible dioxygen-binding was demonstrated by observation of an intense LMCT band for O2(2-) to Fe(III) at 610 (1) and 606 nm (2) upon exposure of dioxygen to acetone solutions of 1 and 2 prepared under an anaerobic conditions at -50 degrees C. The resonance Raman spectra of the dioxygen adduct of 1 exhibited two peaks assignable to the nu(O-O) stretching mode at 873 and 887 cm(-1), which shifted to 825 and 839 cm(-1) upon binding of (18)O2. ESR spectra of all dioxygen adducts were silent. These findings suggest that dioxygen coordinates to the diiron atoms as a peroxo anion in a mu-1,2 mode. Complex 3 exhibited irreversible dioxygen binding. These results indicate that the reversible binding of dioxygen is governed by the hydrophobicity of the dioxygen-binding environment rather than the iron redox potentials.  相似文献   

5.
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric-oxide synthase (NOS) that serves as a one-electron donor to the oxyferrous.heme complex. 4-Aminotetrahydrobiopterin (4-amino-BH4) is a potent inhibitor of NO synthesis, although it mimics all allosteric and structural effects of BH4 and exhibits comparable redox properties. We studied the reaction of reduced endothelial NOS oxygenase domain with O2 in the presence of 4-amino-BH4 at -30 degrees C by optical and electron paramagnetic resonance (EPR) spectroscopy. With Arg as the substrate, we observed a trihydropteridine radical with a corresponding heme species that was oxyferrous, with a Soret maximum at 428 nm and no EPR signal. With NG-hydroxy-l-arginine (NHA) no pterin radical appeared, whereas an axial ferrous heme.NO complex was formed. The corresponding optical spectra, with Soret bands at 417/423 nm, suggest that the proximal sulfur ligand is protonated. Accordingly, 4-amino-BH4 serves as a one-electron donor to Fe(II).O2 with both Arg and NHA, but the reaction cycle cannot be completed with either substrate. We propose that protonation of Fe(II)O2- is inhibited in the presence of 4-amino-BH4. With Arg, dissociation of O2- and binding of O2 yields Fe(II).O2 and a pteridine radical; with NHA, reaction of the substrate with heme-bound O2- eventually yields Fe(II).NO and reduced 4-amino-BH4. These results suggest that BH4 donates a proton to Fe(II).O2- during catalysis and that inhibition by 4-amino-BH4 may be due to its inability to support this essential protonation step.  相似文献   

6.
Schwartz JK  Liu XS  Tosha T  Diebold A  Theil EC  Solomon EI 《Biochemistry》2010,49(49):10516-10525
DNA protection during starvation (Dps) proteins are miniferritins found in bacteria and archaea that provide protection from uncontrolled Fe(II)/O radical chemistry; thus the catalytic sites are targets for antibiotics against pathogens, such as anthrax. Ferritin protein cages synthesize ferric oxymineral from Fe(II) and O(2)/H(2)O(2), which accumulates in the large central cavity; for Dps, H(2)O(2) is the more common Fe(II) oxidant contrasting with eukaryotic maxiferritins that often prefer dioxygen. To better understand the differences in the catalytic sites of maxi- versus miniferritins, we used a combination of NIR circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) to study Fe(II) binding to the catalytic sites of the two Bacillus anthracis miniferritins: one in which two Fe(II) react with O(2) exclusively (Dps1) and a second in which both O(2) or H(2)O(2) can react with two Fe(II) (Dps2). Both result in the formation of iron oxybiomineral. The data show a single 5- or 6-coordinate Fe(II) in the absence of oxidant; Fe(II) binding to Dps2 is 30× more stable than Dps1; and the lower limit of K(D) for binding a second Fe(II), in the absence of oxidant, is 2-3 orders of magnitude weaker than for the binding of the single Fe(II). The data fit an equilibrium model where binding of oxidant facilitates formation of the catalytic site, in sharp contrast to eukaryotic M-ferritins where the binuclear Fe(II) centers are preformed before binding of O(2). The two different binding sequences illustrate the mechanistic range possible for catalytic sites of the family of ferritins.  相似文献   

7.
Reductive nitrosylation of the water-soluble iron derivatives of the cationic Fe(III)(TMPyP) and anionic Fe(III)(TPPS) porphyrins [where TMPyP=tetra-meso-(4-N-methylpyridiniumyl)porphinate and TPPS=tetra-meso-(4-sulfonatophenyl)porphinate] by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) was studied using optical absorption spectroscopy and electron paramagnetic resonance. Nitrosylation rates were obtained, the reaction was found to be first order in the SNAP concentration and the stoichiometry of the reaction was one to one. The similarity between the obtained second-order rate constants for both porphyrins, k(TMPyP)=0.84 x 10(3)M(-1)s(-1) and k(TPPS)=0.97 x 10(3)M(-1)s(-1), suggested that the reaction mechanism is approximately independent of the nature of the porphyrin meso-substituents. A mechanism was proposed involving the hydrolysis of SNAP by an out of plane liganded H(2)O yielding the sulfenic acid of N-acetylpenicillamine and the transfer of NO(-) to Fe(III). The EPR (electron paramagnetic resonance) spectra of the SNAP- and gaseous NO-treated porphyrins were obtained and compared. The difference between the spectra of the cationic and anionic porphyrins indicates different local symmetry and Fe-N-O bond angle. SNAP-treatment produced much more resolved hyperfine structures than gaseous NO-treatment.  相似文献   

8.
The reduction of dioxygen by cellobiose oxidase leads to accumulation of H2O2, with either cellobiose or microcrystalline cellulose as electron donor. Cellobiose oxidase will also reduce many Fe(III) complexes, including Fe(III) acetate. Many Fe(II) complexes react with H2O2 to produce hydroxyl radicals or a similarly reactive species in the Fenton reaction as shown: H2O2 + Fe2+----HO. + HO- + Fe3+. The hydroxylation of salicylic acid to 2,3-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid is a standard test for hydroxyl radicals. Hydroxylation was observed in acetate buffer (pH 4.0), both with Fe(II) plus H2O2 and with cellobiose oxidase plus cellobiose, O2 and Fe(III). The hydroxylation was suppressed by addition of catalase or the absence of iron [Fe(II) or Fe(III) as appropriate]. Another test for hydroxyl radicals is the conversion of deoxyribose to malondialdehyde; this gave positive results under similar conditions. Further experiments used an O2 electrode. Addition of H2O2 to Fe(II) acetate (pH 4.0) or Fe(II) phosphate (pH 2.8) in the absence of enzyme led to a pulse of O2 uptake, as expected from production of hydroxyl radicals as shown: RH+HO.----R. + H2O; R. + O2----RO2.----products. With phosphate (pH 2.8) or 10 mM acetate (pH 4.0), the O2 uptake pulse was increased by Avicel, suggesting that the Avicel was being damaged. Oxygen uptake was monitored for mixtures of Avicel (5 g.1-1), cellobiose oxidase, O2 and Fe(III) (30 microM). An addition of catalase after 20-30 min indicated very little accumulation of H2O2, but caused a 70% inhibition of the O2 uptake rate. This was observed with either phosphate (pH 2.8) or 10 mM acetate (pH 4.0) as buffer, and is further evidence that oxidative damage had been taking place, until the Fenton reaction was suppressed by catalase. A separate binding study established that with 10 mM acetate as buffer, almost all (98%) of the Fe(III) would have been bound to the Avicel. In the presence of Fe(III), cellobiose oxidase could provide a biological method for disrupting the crystalline structure of cellulose.  相似文献   

9.
The differential binding of a number of water-soluble cationic porphyrins to a branched DNA molecule is reported. Tetrakis(4-N-methylpyridiniumyl)porphine (H2TMpyP-4) interacts near the branch point with an immobile DNA junction formed from four 16-mer strands. Its Cu(II) and Ni(II) derivatives show stronger preferential binding in the neighborhood of the branch point. Axially liganded derivatives, Zn, Co, and Mn, also interact near this branch point, but in a different way. We use the reagents methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and bis(o-phenanthroline)copper(I) [(OP)2Cu(I)] to cleave complexes of DNA duplex controls and the junction with these porphyrins. The resulting cleavage patterns are consistent with previous evidence that the branch point provides a strong site for intercalative binding agents, which is not available in unbranched duplexes of identical sequence. The preferential scission by (OP)2Cu(I) in the presence of Ni and Cu porphyrins near the branch point exceeds that seen for any agents we have studied. This hyperreactivity is not seen in the case of porphyrins with axial ligands, ZnTMpyP-4, CoTMpyP-4, and MnTMpyP-4, although these also interact near the branch point. The Zn derivative tends to protect sites close to the branch point from cutting, while the Co and Mn porphyrins moderately enhance cleavage of sites in this region.  相似文献   

10.
Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to [Fe(II)(2)-P](Z) + H(2)O(2) --> [Fe(III)(2)O-P](Z) + H(2)O, where [Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.  相似文献   

11.
Resonance Raman, NMR, and visible spectroscopies, as well as viscosity and equilibrium dialysis studies were used to assess the effect of the N-alkyl substituent of meso-tetrakis(4-N-alkylpyridinium-4-yl)porphyrin cations on DNA binding. The DNAs studied include the native DNA, calf thymus DNA (CT DNA), the synthetic polynucleotides [poly(dGdC)]2 and [poly(dAdT)]2, and the oligonucleotide d(TATACGTATA)2. Both the porphyrins and the metalloporphyrins containing Ni(II) were examined with the N-alkyl = propyl (TPrpyP(4) and NiTPrpyP(4)) and 2-hydroxyethyl (TEtOHpyP(4) and NiTEtOHpyP(4)). The results were compared to those from the parent porphyrins with the N-methyl substituent (TMpyP(4) and NiTMpyP(4)). For almost all the comparisons made, the new porphyrin cations gave results very similar to those for the TMpyP(4) species. The resonance Raman study indicated that for the three DNA polymers all the Ni species were in the four-coordinate form when bound to all three polymers. It is suggested that both TPrpyP(4) and TEtOHpyP(4) bind to GC regions of DNA in the same intercalative manner as TMpyP(4) with the N-alkyl substituent extended into the solvent. For AT regions of DNA, the binding of TPrpyP(4) and TEtOHpyP(4) is nonintercalative, as found previously for TMpyP(4). The NiPrpy(4) and NiTEtOHpyP(4) cations bind to these polymers in a similar manner to the apo-porphyrins. The similar Raman spectral changes for the three Ni porphyrins upon addition of [poly(dAdT)]2 suggest that partial intercalation is not occurring because models indicate that it would be difficult to accommodate the bulkier N-alkyl substituents.  相似文献   

12.
The influence of water-soluble cationic 3N- and 4N-pyridyl porphyrins with different peripheral substituents (oxyethyl, buthyl, allyl, and metallyl) on melting parameters of DNA has been studied. Results indicate that the presence of porphyrin changes the shape and parameters of DNA melting curve. The increase of porphyrins concentration results in the increase of the melting temperature (Tm) and the melting interval (ΔT) of DNA. At the porphyrin-DNA concentration ratio r?=?0.01, changes in the melting temperature have not been observed. The melting intervals almost do not change upon adding of the 4N-porphyrins, while the decrease of ΔT, in the presence of 3N-porphyrins, is observed. Because the intercalation binding mechanism occurs in GC-rich regions of DNA, we assume that 3N-porphyrins, intercalated in GC-rich regions, reduce the thermal stability of these sites, bringing them closer to the thermal stability of the AT-sites, which is the reason for the decrease in the melting interval. While at the relative concentration r?=?0.01 for 4-N porphyrins, already the external binding mechanism “turns on” and the destabilizing effect of porphyrins on GC-pairs compensates stabilizing effect on AT-pairs, as a result of which change in the melting of DNA upon complexation with these porphyrins is not observed. The decrease of the hypochromic effect also indicates the intercalation of investigated porphyrins in the DNA structure, which weakens the staking interaction of base pairs of DNA. The increase of the hypochromic effect of DNA upon binding with porphyrin depends on the type of peripheral substituents of the porphyrin. The results show that porphyrins with butyl and allyl substituents weaken staking interaction of base pairs less than porphyrins with other substituents. The largest change was observed for metallyl porphyrins. It can be the result of bulky peripheral substituents, which make significant local changes in DNA structure.  相似文献   

13.
Biological reduction of nitric oxide (NO) from Fe(II) ethylenediaminetetraacetic acid (EDTA)-NO to dinitrogen (N(2)) is a core process for the continual nitrogen oxides (NO(x)) removal in the chemical absorption-biological reduction integrated approach. To explore the biological reduction of Fe(II)EDTA-NO, the stoichiometry and mechanism of Fe(II)EDTA-NO reduction with glucose or Fe(II)EDTA as electron donor were investigated. The experimental results indicate that the main product of complexed NO reduction is N(2), as there was no accumulation of nitrous oxide, ammonia, nitrite, or nitrate after the complete depletion of Fe(II)EDTA-NO. A transient accumulation of nitrous oxide (N(2)O) suggests reduction of complexed NO proceeds with N(2)O as an intermediate. Some quantitative data on the stoichiometry of the reaction are experimental support that reduction of complexed NO to N(2) actually works. In addition, glucose is the preferred and primary electron donor for complexed NO reduction. Fe(II)EDTA served as electron donor for the reduction of Fe(II)EDTA-NO even in the glucose excessive condition. A maximum reduction capacity as measured by NO (0.818 mM h(-1)) is obtained at 4 mM of Fe(II)EDTA-NO using 5.6 mM of glucose as primary electron donor. These findings impact on the understanding of the mechanism of bacterial anaerobic Fe(II)EDTA-NO reduction and have implication for improving treatment methods of this integrated approach.  相似文献   

14.
Interactions of porphyrins with nucleic acids   总被引:24,自引:0,他引:24  
The interactions of nucleic acids with water-soluble porphyrins and metalloporphyrins have been investigated by stopped-flow and temperature-jump techniques. Both natural DNA (calf thymus) and synthetic homopolymers [poly(dG-dC) and poly(dA-dT)] have been employed. The porphyrins studied belong to the tetrakis(4-N-methylpyridyl)porphine (H2TMpyP-4) series and can be divided into two groups: (i) those which have no axial ligands when bound to nucleic acids [e.g., Ni(II), Cu(II), and the nonmetallic derivatives] and (ii) those which maintain axial ligands upon binding [e.g., Mn(III), Fe(III), Co(III), and Zn(II) derivatives]. The reaction of both axially and nonaxially liganded porphyrins at AT sites is too rapid to be measured by the kinetic methods utilized, whereas at GC sites the interaction of the nonaxially liganded porphyrins is in the millisecond time range and can be monitored by both stopped-flow and temperature-jump techniques. These results corroborate previous static studies, utilizing visible spectroscopy and circular dichroism, which indicate that the formation of an intercalated complex occurs only at GC base pair sites with porphyrins which do not possess axial ligands. With all the porphyrins investigated, the complexes formed at AT sites are envisioned as being of an "external" type involving some degree of overlap between the porphyrin and the bases of the duplex. In relaxation experiments of poly-(dG-dC) with H2TMpyP-4, a large, reproducible effect is observed which can be analyzed as a single exponential. Rate constants for association and dissociation of the H2TMpyP-4/poly(dG-dC) complex are 3.7 X 10(5) M-1 s-1 and 1.8 s-1, respectively. Relaxation studies of mixtures of poly(dA-dT) and poly(dG-dC) with H2TMpyP-4 indicate that the transfer of the porphyrin from one homopolymer to another occurs via a mechanism involving dissociation rather than direct transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Solution properties of the iron-(III) 'picket-fence-like' porphyrin, Fe(III)-alpha,alpha,alpha, beta-tetra-ortho (N-methyl-isonicotinamidophenyl) porphyrin, (Fe(III)PFP) were investigated. These were acid/base properties of the aquo complex with pKa of 3.9 and its aggregation (formation of dimer with K = 1 X 10(-10) dm3 mol-1), complex formation with cyanide ions and 1-methyl imidazole (1-MeIm), spectral properties of the three iron complexes in their ferric and ferrous form and the one-electron reduction potential of these complexes. Knowing these properties, the reaction of the ferric complexes, aquo, dicyano and bis (1-MeIm), with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the iron (III) aquo complex which governs the catalytic efficiency of the metalloporphyrin upon the disproportionation of the superoxide radical was 7.6 X 10(7) dm3 mol-1 s-1, two orders of magnitude faster when compared to the reaction of each of the other complexes. The reduction by other radicals with all iron (III) complexes had similar second-order rate constants (10(9) to 10(10) dm3 mol-1 s-1). The reduction reaction in all cases produced Fe(II)PEP and no intermediate was found. The oxidation reaction of Fe(II)PEP by O2- was one order of magnitude faster when compared to the reduction of Fe(III)PFP by the same radical. Since the reactivity of O2- toward the three iron (III) porphyrin complexes follows their reduction potentials, it is suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The reactions of the Fe(II)PFP complexes with dioxygen were also studied. The aquo complex was found to be first order in O2 and second order in Fe(II)PFP, suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The intermediate formation was corroborated by evidence of the rapid CO binding reaction to the aquo complex of Fe(II)PFP. The two other complexes reacted very slowly with O2 as well as with CO.  相似文献   

16.
The effect of pH on the kinetic parameters (Kms, Vs) of the reaction of adrenaline and Fe(II) (More's salt) oxidation by ceruloplasmin isolated from human donor blood was investigated. It was assumed that the imidazole group of histidine is functionally important for the above reactions. For Fe(II) the effect of the ionizeable group was observed during substrate binding to the ceruloplasmin molecule, whereas in the course of the adrenaline oxidation reaction it manifests itself during catalytic interaction of the substrate with the enzyme. The organic substrate can bind both to the protonated and to the non-protonated form of the enzyme. Fe(II) interacts only with the protonated form of the protein. In both cases, the rate-limiting step of the oxidase reaction is preceded by a single step, i.e., proton binding. The schemes describing the order of proton attachment in the course of the above reactions are proposed.  相似文献   

17.
Mn porphyrins are among the most efficient SOD mimics with potency approaching that of SOD enzymes. The most potent ones, Mn(III) N-alkylpyridylporphyrins bear positive charges in a close proximity to the metal site, affording thermodynamic and kinetic facilitation for the reaction with negatively charged superoxide. The addition of electron-withdrawing bromines onto beta-pyrrolic positions dramatically improves thermodynamic facilitation for the O2*- dismutation. We have previously characterized the para isomer, Mn(II)Br(8)TM-4-PyP(4+) [Mn(II) beta-octabromo-meso-tetrakis(N-methylpyridinium-4-yl)porphyrin]. Herein we fully characterized its meta analogue, Mn(II)Br(8)TM-3-PyP(4+) with respect to UV/vis spectroscopy, electron spray mass spectrometry, electrochemistry, O2*- dismutation, metal-ligand stability, and the ability to protect SOD-deficient Escherichia coli in comparison with its para analogue. The increased electron-deficiency of the metal center stabilizes Mn in its +2 oxidation state. The metal-centered Mn(III)/Mn(II) reduction potential, E((1/2))=+468 mV vs NHE, is increased by 416 mV with respect to non-brominated analogue, Mn(III)TM-3-PyP(5+) and is only 12 mV less positive than for para isomer. Yet, the complex is significantly more stable towards the loss of metal than its para analogue. As expected, based on the structure-activity relationships, an increase in E((1/2)) results in a higher catalytic rate constant for the O2*- dismutation, log k(cat)> or =8.85; 1.5-fold increase with respect to the para isomer. The IC(50) was calculated to be < or =3.7 nM. Manipulation of the electron-deficiency of a cationic porphyrin resulted, therefore, in the highest k(cat) ever reported for a metalloporphyrin, being essentially identical to the k(cat) of superoxide dismutases (log k(cat)=8.84-9.30). The positive kinetic salt effect points to the unexpected, unique and first time recorded behavior of Mn beta-octabrominated porphyrins when compared to other Mn porphyrins studied thus far. When species of opposing charges react, the increase in ionic strength invariably results in the decreased rate constant; with brominated porphyrins the opposite was found to be true. The effect is 3.5-fold greater with meta than with para isomer, which is discussed with respect to the closer proximity of the quaternary nitrogens of the meta isomer to the metal center than that of the para isomer. The potency of Mn(II)Br(8)TM-3-PyP(4+) was corroborated by in vivo studies, where 500 nM allows SOD-deficient E. coli to grow >60% of the growth of wild type; at concentrations > or =5 microM it exhibits toxicity. Our work shows that exceptionally high k(cat) for the O2*- disproportionation can be achieved not only with an N(5)-type coordination motif, as rationalized previously for aza crown ether (cyclic polyamines) complexes, but also with a N(4)-type motif as in the Mn porphyrin case; both motifs sharing "up-down-up-down" steric arrangement.  相似文献   

18.
The fluorescent intercalation complex of ethidium bromide with DNA was used as a probe to demonstrate damage in the base-pair region of DNA, due to the action of superoxide radicals. The O.2- radical itself, generated by gamma-radiolysis of oxygenated aqueous Na-formate solutions, is rather ineffective with respect to impairment of DNA. Copper(II) ions, known to interact with DNA by coordinate binding at purines, enhance the damaging effect of O.2-. Addition of H2O2 to the DNA/Cu(II) system gives rise to further enhancement, so that DNA impairment by O.2- becomes comparable to that initiated by .OH radicals. These results suggest that the modified, Cu(II)-catalysed, Haber-Weiss process transforms O.2- into .OH radicals directly at the target molecule, DNA-Cu2+ + O.2-----DNA-Cu+ + O2 DNA-Cu+ + H2O2----DNA...OH + Cu2+ + OH- in a "site-specific" mechanism as proposed for other systems (Samuni et al. 1981; Aronovitch et al. 1984). Slow DNA decomposition also occurs without gamma-irradiation by autocatalysis of DNA/Cu(II)/H2O2 systems. In this context we observed that Cu(II) in the DNA-Cu2+ complex (unlike free Cu2+) is capable of oxidizing Fe(II) to Fe(III), thus the redox potential of the Cu2+/Cu+ couple appears to be higher than that of the Fe3+/Fe2+ couple when the ions are complexed with DNA. Metal-catalysed DNA damage by O.2- also occurs with Fe(III), but not with Ag(I) or Cd(II) ions. It was also observed that Cu(II) ions (but neither Ag(I) nor Cd(II] efficiently quench the fluorescence of the intercalation complex of ethidium bromide with DNA.  相似文献   

19.
Tetrahydrobiopterin (BH4) is an essential cofactor of nitric-oxide synthase (NOS) that serves as a 1-electron donor to the oxyferrous-heme complex. 4-Amino-tetrahydrobiopterin (4-amino-BH4) inhibits NO synthesis, although it has similar redox properties. We recently reported that 4-amino-BH4 is capable of electron transfer to Fe(II).O(2) in cryogenic single-turnover [J. Biol. Chem. 278 (2003) 48602]. We also suggested that BH4 serves as a proton donor to the Fe(II).O(2)(-) complex, and that 4-amino-BH4 cannot perform this second essential function. To corroborate these claims and to further characterize the intermediates observed after oxygenation of NOS in the presence of 4-amino-BH4, we added CO immediately after O(2) addition to the reduced oxygenase domain of endothelial NOS at -30 degrees C. This resulted in complete formation of a P450-type Fe(II).CO complex with either Arg or NG-hydroxy-L-arginine as the substrate. In the presence of 4-amino-BH2, which is redox-inactive, the same procedure yielded ferric heme with either substrate, without formation of any Fe(II).CO complex. We conclude: (i) O(2) binding to ferrous heme in the presence of 4-amino-BH2 is essentially irreversible; (ii) 4-amino-BH4 can reduce the oxyferrous complex; (iii) O(2)(-), rather than H(2)O(2) is the immediate product of uncoupled catalysis in the presence of 4-amino-BH4.  相似文献   

20.
Friedreich's ataxia is associated with a deficiency in frataxin, a conserved mitochondrial protein of unknown function. Here, we investigate the iron binding and oxidation chemistry of Escherichia coli frataxin (CyaY), a homologue of human frataxin, with the aim of better understanding the functional properties of this protein. Anaerobic isothermal titration calorimetry (ITC) demonstrates that at least two ferrous ions bind specifically but relatively weakly per CyaY monomer (K(d) approximately 4 microM). Such weak binding is consistent with the hypothesis that the protein functions as an iron chaperone. The bound Fe(II) is oxidized slowly by O(2). However, oxidation occurs rapidly and completely with H(2)O(2) through a non-enzymatic process with a stoichiometry of two Fe(II)/H(2)O(2), indicating complete reduction of H(2)O(2) to H(2)O. In accord with this stoichiometry, electron paramagnetic resonance (EPR) spin trapping experiments indicate that iron catalyzed production of hydroxyl radical from Fenton chemistry is greatly attenuated in the presence of CyaY. The Fe(III) produced from oxidation of Fe(II) by H(2)O(2) binds to the protein with a stoichiometry of six Fe(III)/CyaY monomer as independently measured by kinetic, UV-visible, fluorescence, iron analysis and pH-stat titrations. However, as many as 25-26 Fe(III)/monomer can bind to the protein, exhibiting UV absorption properties similar to those of hydrolyzed polynuclear Fe(III) species. Analytical ultracentrifugation measurements indicate that a tetramer is formed when Fe(II) is added anaerobically to the protein; multiple protein aggregates are formed upon oxidation of the bound Fe(II). The observed iron oxidation and binding properties of frataxin CyaY may afford the mitochondria protection against iron-induced oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号