首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suitability of a variety of media and procedures for the enumeration of sulphite-reducing clostridia in food was investigated. The most suitable procedure was pasteurization of the 1/10 macerate for at least 1 min at 80°C; followed by culture at 30°C for up to 3 d in a sulphite-based, differential reinforced clostridium medium, without bicarbonate or lactate but with an increased iron concentration, and sulphite and iron added after sterilization. Black sulphite-reducing colonies were finally tested for sensitivity to metronidazole and confirmation of their failure to grow on agar slopes under aerobic conditions.  相似文献   

2.
A comparative study of methods to enumerate sulphite-reducing Clostridium spores and Group D faecal streptococci in oysters demonstrated that pour plate solid agar techniques gave higher counts than liquid broth most probable number procedures. Reinforced clostridial broth with supplements to detect sulphite reduction was compared with pour plates of egg yolk-free tryptose sulphite cycloserine agar incubated at 37 degrees C for 24 h. Azide dextrose broth was compared with pour plates using Slanetz and Bartley (SB) agar or KF-streptococcus agar at 37 degrees C. Most probable number procedures used for both groups of organisms gave excessive numbers of improbable tube combinations. For enumeration of Group D faecal streptococci, a pour plate technique using SB agar incubated at 37 degrees C for 48 h is recommended.  相似文献   

3.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

4.
Uptake of iron by a mammalian epithelial cell line (CNCM I-221) was shown to be dependent on the nature of the iron complex. Iron uptake was demonstrated by cytochemical staining and determination of redox-reactive iron in cell lysates. Three classes of ligands were investigated: (i) low molecular weight hydrophilic compounds, represented by ethylenediamine-tetraacetic acid (EDTA) and other charged ligands such as adenosine phosphates (ATP, ADP, AMP) and diethylenetriaminepentaacetic acid (DTPA), (2) low-molecular weight lipophilic ligands such as 8-hydroxyquinoline (8-HQ) and (3) a high molecular mass ligand, dextran. Iron complexed to 8-HQ accumulated intracellularly, the uptake rate of iron being 4.16 fmoles cell-1 h-1 of exposure at 37 degrees C or 3.86 fmoles cell-1 h-1 at 4 degrees C. Iron-dextran was endocytosed and retained in phagosomes. The uptake rate of iron following exposure to iron dextrans was found to be 5.6 fmoles cell-1 h-1 of exposure at 37 degrees C. In contrast to iron/8-HQ, uptake of iron dextran by cells was inhibited at 4 degrees C. Iron complexed to low molecular weight hydrophilic ligands was not taken up by cells. Cytotoxicity was measured by reduction of plating efficiency or tritiated thymidine incorporation. These tests showed that toxic effects of added iron were demonstrable only in cells exposed to the complex with 8-HQ.  相似文献   

5.
Survival of V-79 Chinese hamster cells was assessed by colony growth assay after hypothermic exposure in the presence of iron chelators. At 5 degrees C, maximum protection from hypothermic damage was achieved with a 50 microM concentration of the intracellular ferric iron chelator Desferal. A 3-hr prehypothermic incubation with 50 microM Desferal followed by replacement with chelator-free medium at 5 degrees C also provided some protection. This was not observed when the extracellular chelator DETA-PAC (50 microM) was used prior to cold storage. Treating 5 degrees C-stored cells with Desferal just prior to rewarming was ineffective, but treating cells with Desferal during hypothermia exposure after a significant period of unprotected cold exposure ultimately increased the surviving fraction. Submaximal protection during hypothermia was achieved to various degrees with extracellular chelators at 5 degrees C, including 50 microM DETAPAC and 110 microM EDTA. EGTA (110 microM) had little effect. The sensitization of cells at 5 degrees C with 200 microM FeCl3 could be reduced or eliminated with Desferal in accordance with a 1:1 binding ratio. At 10 degrees C, 50 microM Desferal, 50 microM DETAPAC, and 110 microM EDTA were as or less effective in protecting cells than at 5 degrees C. An Arrhenius plot of cell inactivation rates shows a break at 7-8 degrees C, corresponding to maximum survival for control cells and cells in 50 microM Desferal; however, the amount of protection offered by the chelator increases with decreasing temperature below about 19 degrees C, and sensitization increases above that point. It has not previously been shown that iron chelators protect against cellular hypothermia damage which is uncomplicated by previous or simultaneous ischemia. This may be relevant to the low-temperature storage of transplant organs, in which iron of intracellular origin and in the perfusate may be active and damaging.  相似文献   

6.
AIMS: To study the effects of competitive microbiota, temperature and nutrient availability on Salmonella, Enterococcus, Campylobacter spores of sulphite reducing anaerobes and bacteriophages MS2 and phiX174 in sediments from a greywater treatment system. METHODS AND RESULTS: Standard culture methods were used. Bacteria died off rapidly under normal conditions (20 degrees C, competitive microbiota) but remained stable or grew in the other conditions studied. When the sediments became nutrient depleted after 2 weeks, a log-linear die-off was observed for Salmonella, which was higher at 20 degrees C than at 4 degrees C. Bacteriophage decay was shown to be log-linear from day 0, with T90 values ranging from 9 (phiX174, 20 degrees C) to 55 days (phiX174, 4 degrees C). The MS2 phage had a significantly higher decay rate in tyndallized sediments (T90 = 17 days) than in original sediments (T90 = 47 days) (P < 0.001), with temperature not shown to affect the decay rate. Spores of sulphite-reducing anaerobes were not significantly reduced during the study period (35 days). Campylobacter died-off rapidly or entered a viable but non-culturable state and subsequently results were not provided. CONCLUSIONS: Competition was the most important factor to suppress pathogenic bacterial growth in an eutrophic environment. When nutrient depleted conditions prevailed, temperature was more important and log-linear decay of microorganisms could be observed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the normally occurring microbiota will suppress pathogenic bacterial growth in nutrient rich sediments. With lower nutrient status, temperature is the more important factor in reducing pathogens.  相似文献   

7.
Calcium stimulates hepatocyte iron uptake from transferrin, ferric-iron-pyrophosphate and ferrous-iron-ascorbate. Maximal stimulation of iron uptake is observed at 1-1.5 mM of extra-cellular calcium and the effect is reversible and immediate. Neither the receptor affinity for transferrin, nor the total amounts of transferrin associated with the cells or the rate of transferrin endocytosis are significantly affected by calcium. In the presence of calcium the rate of iron uptake of non-transferrin bound iron increases abruptly at approximate 17 degrees C and 27 degrees C and as assessed by Arrhenius plots, the activation energy is reduced in a calcium dependent manner at approx. 27 degrees C. At a similar temperature, i.e., between 25 degrees C and 28 degrees C, calcium increases the rates of cellular iron uptake from transferrin in a way that is not reflected in the rate of transferrin endocytosis. By the results of this study it is concluded that calcium increases iron transport across the plasma membrane by a mechanism dependent on membrane fluidity.  相似文献   

8.
An enrichment culture from a boreal sulfide mine environment containing a low-grade polymetallic ore was tested in column bioreactors for simulation of low temperature heap leaching. PCR-denaturing gradient gel electrophoresis and 16S rRNA gene sequencing revealed the enrichment culture contained an Acidithiobacillus ferrooxidans strain with high 16S rRNA gene similarity to the psychrotolerant strain SS3 and a mesophilic Leptospirillum ferrooxidans strain. As the mixed culture contained a strain that was within a clade with SS3, we used the SS3 pure culture to compare leaching rates with the At. ferrooxidans type strain in stirred tank reactors for mineral sulfide dissolution at various temperatures. The psychrotolerant strain SS3 catalyzed pyrite, pyrite/arsenopyrite, and chalcopyrite concentrate leaching. The rates were lower at 5 degrees C than at 30 degrees C, despite that all the available iron was in the oxidized form in the presence of At. ferrooxidans SS3. This suggests that although efficient At. ferrooxidans SS3 mediated biological oxidation of ferrous iron occurred, chemical oxidation of the sulfide minerals by ferric iron was rate limiting. In the column reactors, the leaching rates were much less affected by low temperatures than in the stirred tank reactors. A factor for the relatively high rates of mineral oxidation at 7 degrees C is that ferric iron remained in the soluble phase whereas, at 21 degrees C the ferric iron precipitated. Temperature gradient analysis of ferrous iron oxidation by this enrichment culture demonstrated two temperature optima for ferrous iron oxidation and that the mixed culture was capable of ferrous iron oxidation at 5 degrees C.  相似文献   

9.
The biooxidation capacity of an extremely thermoacidophilic archaeon Metallosphaera sedula (DSMZ 5348) was examined under bioenergetic challenges imparted by thermal or chemical stress in regard to its potential use in microbial bioleaching processes. Within the normal growth temperature range of M. sedula (70-79 degrees C) at pH 2.0, upward temperature shifts resulted in bioleaching rates that followed an Arrhenius-like dependence. When the cells were subjected to supraoptimal temperatures through gradual thermal acclimation at 81 degrees C (Han et al., 1997), cell densities were reduced but 3 to 5 times faster specific leaching rates (Fe3+ released from iron pyrite/cell/h) could be achieved by the stressed cells compared to cells at 79 degrees C and 73 degrees C, respectively. The respiration capacity of M. sedula growing at 74 degrees C was challenged by poisoning the cells with uncouplers to generate chemical stress. When the protonophore 2,4-dinitrophenol (5-10 μM) was added to a growing culture of M. sedula on iron pyrite, there was little effect on specific leaching rates compared to a culture with no protonophore at 74 degrees C; 25 μM levels proved to be toxic to M. sedula. However, a significant stimulation in specific rate was observed when the cells were subjected to 1 μM nigericin (+135%) and 2 μM (+63%); 5 μM levels of the ionophore completely arrested cell growth. The ionophore effect was further investigated in continuous culture growing on ferrous sulfate at 74 degrees C. When 1 μM nigericin was added as a pulse to a continuous culture, a 30% increase in specific iron oxidation rate was observed for short intervals, indicating a potential positive impact on leaching when periodic chemical stress is applied. This study suggests that biooxidation rates can be increased by strategic exposure of extreme thermoacidophiles to chemical or thermal stress, and this approach should be considered for improving process performance. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

10.
The basolateral membrane of mouse duodenal enterocytes can be selectively labelled in vitro with 59Fe by incubating intact enterocytes with 59Fe(III)-nitrilotriacetate at 0-4 degrees C. It has been proposed that this labelling represents binding to a site important in the transfer of intracellular Fe to the portal plasma (Snape, S., Simpson, R.J. and Peters, T.J. (1990) Cell Biochem. Funct. 8, 107-115). Studies presented here show binding to intact enterocytes in vitro was complete within 1 h and was proportional to enterocyte protein concentration. Binding to enterocytes isolated from both normal and chronically hypoxic mice showed a hyperbolic dependence on medium Fe(III) concentration, consistent with a single class of binding sites. Neither apparent binding constant nor maximal binding were increased by hypoxic exposure of mice, suggesting that the increased in vivo labelling of this site in hypoxia is not due to an increase in affinity or capacity of this site for iron. Release of iron from intact enterocytes, labelled at 0-4 degrees C, was measured at 37 degrees C and 0-4 degrees C. Release of 59Fe was extensive and more rapid at 37 degrees C with highest release to mouse serum. Iron released to serum was found to be bound to transferrin. Prior dialysis of serum against buffer led to complete failure of enterocytes to release iron. Reconstituting serum by adding back the dialysate restores release to levels seen in fresh serum, suggesting that low molecular weight serum components, notably bicarbonate, mediate iron transfer from the basolateral membrane to serum transferrin. The properties of the basolateral membrane iron binding site described here are consistent with a role in the iron transfer process.  相似文献   

11.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

12.
13.
Xenorhabdus luminescens, a newly isolated luminous bacterium collected from a human wound, was characterized. The effects of ionic strength, temperature, oxygen, and iron on growth and development of the bioluminescent system were studied. The bacteria grew and emitted light best at 33 degrees C in a medium with low salt, and the medium after growth of cells to a high density was found to have antibiotic activity. The emission spectrum peaked at 482 nm in vivo and at 490 nm in vitro. Both growth and the development of luminescence in X. luminescens required oxygen and iron. The isolated luciferase itself exhibited a temperature optimum at about 40 degrees C; after purification by affinity chromatography, it showed two bands (52 and 41 kilodaltons) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicative of an alpha and beta subunit structure. Reduced flavin mononucleotide (Km of 1.4 microM) and tetradecanal (Km of 2.1 microM) were the best substrates for the luciferase, and the first-order decay constant under these conditions at 37 degrees C was 0.79 s-1.  相似文献   

14.
Iron reduction by psychrotrophic enrichment cultures   总被引:1,自引:0,他引:1  
Psychrotrophic (<20 degrees C) enrichment cultures from deep Pacific marine sediments and Alaskan tundra permafrost reduced ferric iron when using organic acids or H(2) as electron donors. The representative culture W3-7 from the Pacific sediments grew fastest at 10 degrees C, which was 5-fold faster than at 25 degrees C and more than 40-fold faster than at 4 degrees C. Fe(III) reduction was also the fastest at 10 degrees C, which was 2-fold faster than at 25 degrees C and 12-fold faster than at 4 degrees C. Overall, about 80% of the enrichment cultures exhibited microbial Fe(III) reduction under psychrotrophic conditions. These results indicated that microbial iron reduction is likely widespread in cold natural environments and may play important roles in cycling of iron and organic matter over geological times.  相似文献   

15.
Xenorhabdus luminescens, a newly isolated luminous bacterium collected from a human wound, was characterized. The effects of ionic strength, temperature, oxygen, and iron on growth and development of the bioluminescent system were studied. The bacteria grew and emitted light best at 33 degrees C in a medium with low salt, and the medium after growth of cells to a high density was found to have antibiotic activity. The emission spectrum peaked at 482 nm in vivo and at 490 nm in vitro. Both growth and the development of luminescence in X. luminescens required oxygen and iron. The isolated luciferase itself exhibited a temperature optimum at about 40 degrees C; after purification by affinity chromatography, it showed two bands (52 and 41 kilodaltons) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicative of an alpha and beta subunit structure. Reduced flavin mononucleotide (Km of 1.4 microM) and tetradecanal (Km of 2.1 microM) were the best substrates for the luciferase, and the first-order decay constant under these conditions at 37 degrees C was 0.79 s-1.  相似文献   

16.
Bacterial oxidation of ferrous iron at low temperatures   总被引:1,自引:0,他引:1  
This study comprises the first report of ferrous iron oxidation by psychrotolerant, acidophilic iron-oxidizing bacteria capable of growing at 5 degrees C. Samples of mine drainage-impacted surface soils and sediments from the Norilsk mining region (Taimyr, Siberia) and Kristineberg (Skellefte district, Sweden) were inoculated into acidic ferrous sulfate media and incubated at 5 degrees C. Iron oxidation was preceded by an approximately 3-month lag period that was reduced in subsequent cultures. Three enrichment cultures were chosen for further work and one culture designated as isolate SS3 was purified by colony isolation from a Norilsk enrichment culture for determining the kinetics of iron oxidation. The 16S rRNA based phylogeny of SS3 and two other psychrotolerant cultures, SS5 from Norilsk and SK5 from Northern Sweden, was determined. Comparative analysis of amplified 16S rRNA gene sequences showed that the psychrotolerant cultures aligned within Acidithiobacillus ferrooxidans. The rate constant of iron oxidation by growing cultures of SS3 was in the range of 0.0162-0.0104 h(-1) depending on the initial pH. The oxidation kinetics followed an exponential pattern, consistent with a first order rate expression. Parallel iron oxidation by a mesophilic reference culture of Acidithiobacillus ferrooxidans was extremely slow and linear. Precipitates harvested from the 5 degrees C culture were identified by X-ray diffraction as mixtures of schwertmannite (ideal formula Fe(8)O(8)(OH)(6)SO(4)) and jarosite (KFe(3)(SO(4))(2)(OH)(6)). Jarosite was much more dominant in precipitates produced at 30 degrees C.  相似文献   

17.
Polyacrylamide-gel electrophoresis in urea was used to prepare the four molecular species of transferrin:diferric transferrin, apotransferrin and the two monoferric transferrins with either the C-terminal or the N-terminal metal-binding site occupied. The interaction of these 125I-labelled proteins with rabbit reticulocytes was investigated. At 4 degrees C the average value for the association constant for the binding of transferrin to reticulocytes was found to increase with increasing iron content of the protein. The association constant for apotransferrin binding was 4.6 X 10(6)M-1, for monoferric (C-terminal iron) 2.5 X 10(7)M-1, for monoferric (N-terminal iron) 2.8 X 10(7)M-1 and for diferric transferrin, 1.1 X 10(8)M-1. These differences in the association constants did not affect the processing of the transferrin species by the cells at 37 degrees C. Accessibility of the proteins to extracellular proteinase indicated that the transferrin was internalized by the cells regardless of the iron content of the protein, since in each case 70% was inaccessible. Cycling of the cellular receptors may also occur in the absence of bound transferrin.  相似文献   

18.
Moderately thermophilic, iron-oxidizing acidophiles were enriched from coal collected from an open-cut mine in Collie, Western Australia. Iron-oxidizers were enriched in fluidized-bed reactors (FBR) at 60 degrees C and 70 degrees C; and iron-oxidation rates were determined. Ferrous iron oxidation by the microbiota in the original coal material was inhibited above 63;C. In addition to four iron-oxidizers, closely related to Sulfobacillus spp that had been earlier isolated from the 60 degrees C FBR, one heterotroph closely related to Alicyclobacillus spp was isolated. The Alicyclobacillus sp. isolated from the Collie coal mine tolerated a lower pH than known Alicyclobacillus spp and therefore may represent a new species. The optimum temperature for growth of the iron-oxidizing strains was approximately 50 degrees C and their maximum temperatures were approximately 60 degrees C. The FBR was adjusted to operate at 50 degrees C and was inoculated with all of the isolated iron-oxidizing strains. At 60 degrees C, an iron-oxidation rate of 0.5 g Fe(2+) l(-1) x h(-1) was obtained. At 50 degrees C, the iron-oxidation rate was only 0.3 g Fe(2+) l(-1) x h(-1). These rates compare favourably with the iron-oxidation rate of Acidianus brierleyi in shake-flasks, but are considerably lower than mesophilic iron-oxidation rates.  相似文献   

19.
Biological ferric iron production was combined with ferric sulphate leaching of chalcopyrite concentrate and the effects of pH, Fe3+, temperature and solids concentration on the leaching were studied. The copper leaching rates were similar at pH of 1.0-1.8 and in the presence of 7-90 g L-1 Fe3+ despite massive iron precipitation with 90 g L-1 Fe3+. Increase of the leaching temperature from 50 degrees C to 86 degrees C and solids concentration from 1% to 10% increased the copper leaching rate. Increase in solids concentration from 1% to 10% decreased the copper yields from 80% to 40%. Stepwise addition of ferric iron did not improve the copper yields. CuFeS2, Ag and Cu1.96S potentials indicated the formation of a passivating layer, which consisted of jarosite and sulphur precipitates and which was responsible for the decreased leaching rates.  相似文献   

20.
The effect of growth at 42 degrees C on the different components of the siderophore-mediated iron transport that are induced by iron limitation in Azospirillum brasilense was examined. Biosynthesis of the siderophore spirilobactin was strongly inhibited (20-fold) by growth at 42 degrees C, whereas the transport of iron by the ferric-spirilobactin transport system and the induction of the iron-regulated outer membrane proteins were unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号