首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The pathophysiology of infantile hydrocephalus is poorly understood, and shunt treatment does not always lead to a normal neurological outcome. To investigate some of the neurochemical changes in infantile hydrocephalus and the response to shunt treatment, we have used high-resolution 1H-NMR spectroscopy to analyze extracts of cerebral cortex from H-Tx rats, which have inherited hydrocephalus with an onset in late gestation. Hydrocephalic rats and rats with shunts placed at either 4 or 12 days after birth were studied at 21 days after birth, together with age-matched control littermates. In hydrocephalic rats there was a 46–62% reduction in the following compounds: myo -inositol, creatine, choline-containing compounds, N -acetyl aspartate, taurine, glutamine, glutamate, aspartate, and alanine. Phosphocreatine, glycine, GABA, and lactate were also reduced but not significantly. These changes are consistent with neuronal atrophy rather than ischemic damage. In hydrocephalic rats that received shunt treatment at 4 days, there were no significant reductions in any chemicals, indicating a normal complement of neurons. However, some compounds, particularly taurine, were elevated above control. After treatment at 12 days, N -acetyl aspartate and aspartate remained significantly reduced, suggesting continued neuronal deficiency.  相似文献   

2.
CHANGES IN CEREBRAL CORTICAL LIPIDS IN COBALT-INDUCED EPILEPSY   总被引:2,自引:0,他引:2  
Abstract– In control rats and in rats rendered epileptic by insertion of cobalt slivers into the cerebral cortex, total free fatty acids, free cholesterol, esterified cholesterol, triglycerides and phospholipids were measured in normal and lesion areas of cerebral cortex. The cortical lipid profile of the adult rat resembled that of the whole brain of very young rats rather than that of adult whole brain, with the principal differences from whole adult brain being lower total lipid content, increased proportions of phosphatidyl choline in the phospholipid fraction, and higher levels of cholesterol esters. Cobalt-induced epilepsy was associated with significant changes in cerebral cortical lipids in the area of the lesion and in the non-necrotic tissue adjacent to the lesion. The total lipid in the area of the lesion decreased sharply as a result of reductions in free cholesterol and total phospholipids. The levels of cholesterol esters and triglycerides increased in the area of the lesion, and cholesterol esters were also increased in the adjacent tissue. In addition there were decreases in the proportion of phosphatidyl ethanolamine in the phospholipids from the lesion site and adjacent tissue and decreases in the proportions of oleic, arachidonic and nervonic acids (unsaturated acids), and an increase in the proportions of lignoceric acid in the phospholipids. In the site of the lesion only, we observed a decrease in phospholipid palmitic acid and an appreciable increase in the proportions of an unidentified long-chained fatty acid.  相似文献   

3.
In order to investigate changes in levels of monoamines and their related substances together with those of other neurotransmitters (acetylcholine and GABA), choline and substances related to energy metabolism (ATP, lactate and glucose) accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats (SHR) was utilized. Animals were subjected to 1 or 2 h ischemia. Then the concentrations of substances were measured in the cerebral cortex, hippocampus and striatum and compared with control values. Due to the incomplete ischemia, ATP showed a moderate decrease, while lactate and choline increased remarkably, and GABA underwent a moderate increase. With regard to monoamines, both noradrenaline and serotonin levels were reduced in the cerebral cortex and hippocampus, whereas dopamine levels increased in the hippocampus. All monoamine metabolites, i.e. metabolites by monoamine oxidase (MAO), metabolites by catechol-O-methyltransferase (COMT), and metabolites by both MAO and COMT, underwent increases. The 3-methoxytyramine level in particular showed marked increases. Furthermore levels of precursor amino acids as well as 5-hydroxytryptophan rose. Acetylcholine decreased moderately only in the cerebral cortex. Among these changes, sustained increases in all the monoamine metabolites were characteristic in the incompletely ischemic brain, suggesting that both COMT and MAO retain their activities in the incompletely ischemic brain.  相似文献   

4.
We investigated, using adult (2-month-old) and senescent (12- and 24-month-old) rats, the effects of aging on the relationship between the alpha 1-adrenergic coupling system and the membrane viscosity of the cerebral cortex. There was no age-related difference in the KD values of [3H]prazosin binding on the membranes. The Bmax values of [3H]prazosin binding were reduced with advanced age. Norepinephrine-induced formation of 3H-labeled inositol phosphates (3H-IPs) in the slices increased with advanced age. The EC50 values for norepinephrine to stimulate the formation of 3H-IPs at advanced age were lower than that at adult age. The cholesterol content in membranes increased with advanced age. No changes in the phospholipid content in membranes were observed with advanced age. Concomitantly, an increase of the molar ratio of cholesterol to phospholipids was observed with advanced age. The membrane viscosity as measured by 1,6-diphenyl-1,3,5-hexatriene increased with advanced age. These results indicate that the altered cholesterol content and/or viscosity in cortical membranes of the aged rat may account for the loss of alpha 1-adrenergic receptor density and/or compensatory changes in the receptor-phospholipase C coupling system.  相似文献   

5.
Muscimol and t-butylbicyclophosphorothionate (TBPS) are known to label two distinct sites within the gamma-aminobutyric acidA (GABAA) receptor complex, i.e., the GABA recognition site and the chloride ionophore, respectively. Age-dependent changes in the specific binding of [3H]muscimol and [35S]TBPS were compared in membranes prepared from the cerebral cortex of rats, 2-800 days old. Perinatal (day 2) binding of muscimol and TBPS represented 8 and 20% of the respective values for adults (day 180). After the first week, muscimol binding increased more rapidly than TBPS binding. Levels near those of adults were reached at day 20 and remained practically unchanged in adulthood (day 180). In aged (780-day-old) rats, the binding of TBPS was significantly reduced, whereas muscimol binding did not change compared with adult values. This decrease of TBPS binding derived from a reduced density of binding sites, rather than from affinity changes. The allosteric responsiveness of TBPS binding to exogenous GABA was also reduced in aged animals. These findings indicate an age-related change in the molecular (structural) organization of the GABAA receptor-chloride ionophore complex in rat cerebral cortex.  相似文献   

6.
Changes in content of brain mitochondrial phospholipids were examined in rats after 30 and 60 min of decapitation ischemia compared with controls, to explore the degradation of the mitochondrial membrane and its relation to dysfunction of mitochondria. Activities of respiratory functions and respiratory enzymes (cytochrome c oxidase; F0F1-ATPase) decreased significantly during ischemia. Considerable decreases in cardiolipin and phosphatidylinositol content were observed after 60 min, and other phospholipids showed similar but nonsignificant decreases in content. The amount of polyunsaturated fatty acids chains, such as arachidonic and docosahexaenoic acids, was reduced in each phospholipid, in some cases significantly, after 30 and 60 min of ischemia in time-dependent manners. Degradation of mitochondrial phospholipids during ischemia associated with the deterioration of mitochondrial respiratory functions suggested the significance of such changes in phospholipid content in disintegration of cellular energy metabolism during cerebral ischemia.  相似文献   

7.
We investigated the effect of administration of docosahexaenoic acid (C22:6, n-3; 300 mg/kg.day, for 12 weeks) on the degree of membrane order and membrane-bound acetylcholinesterase activity of the cerebral cortex synaptic plasma membrane in male Wistar rats. Docosahexaenoic acid levels in the synaptic plasma membrane increased significantly by 16% over levels in control rats concomitant with an increase in the molar ratio of docosahexaenoic acid to arachidonic acid. Synaptic plasma membrane order, assessed by 1,6-diphenyl-1,3,5-hexatriene, which measures order of the bulk internal hydrophobic lipid core, decreased significantly in the docosahexaenoic acid-fed rats. Lateral mobility of both global and annular lipids measured by pyrene also increased. Acetylcholinesterase activity of the synaptic plasma membrane was unaffected, and synaptic plasma membrane phospholipid contents increased in the docosahexaenoic acid-fed rats, with a concomitant decrease in the cholesterol/phospholipid molar ratio. Lipid peroxide and reactive oxygen species, indicators of tissue oxidative stress, decreased in both the cerebral cortex synaptosome and homogenate of the docosahexaenoic acid-fed rats. Arrhenius plot showed a break point in acetylcholinesterase activity at 22 degrees C and 24 degrees C in plasma membranes from docosahexaenoic acid-fed and control rats, respectively. The present experiment indicates that chronic administration of docosahexaenoic acid does not affect synaptic acetylcholinesterase activity and evoke oxidative stress, although it increases the disorder of the global and annular lipids of rat synaptic plasma membranes.  相似文献   

8.
The effects of embryonic exposure on brain phospholipid levels were studied by injecting various concentrations of ethanol into fertile chicken eggs at 0 days of development. At 18 days of development, the levels of total phospholipids and various phospholipid classes were assayed in brain tissue and correlated to neuron densities within the cerebral hemispheres and the optic lobes. Although ethanol concentrations ranging from 0 to 3700 μm/Kg egg wt. failed to influence either total brain weight or total brain phospholipid levels, ethanol-induced changes in the levels of individual phospholipid classes were observed. When injected with 7 μm of ethanol/Kg egg wt., a 2- to 3-fold increase in brain phosphatidylethanolamine (PE) levels were observed with reduced levels of brain phosphatidylcholine (PC) and brain sphingomyelin (SP). When injected with 74 μm of ethanol/Kg egg wt., ethanol-induced increases in brain phosphatidylserine (PS) and PE were observed with ethanol-induced decreases in brain PC and SP. Cell fractionation studies demonstrated ethanol-induced increases in brain PE and PS and ethanol-induced decreases in brain PC and SP in nuclear, mitochondrial, and microsomal membranes. These ethanol-induced alterations in brain phospholipid profiles correlated with ethanol-induced reductions in neuron densities within the cerebral hemispheres and optic lobes.  相似文献   

9.
Abstract: In the cerebral cortices of rats, during insulininduced hypoglycemia, changes in the concentrations of labile phosphate compounds [ATP, ADP, AMP, and phosphocreatine (PCr)] and glycolytic metabolites (lactate, pyruvate, and glucose) as well as phospholipids and free fatty acids (FFAs) were studied in relation to extracellular potassium and calcium activities. Changes in extracellular calcium and potassium activities occurred at approximately the onset of isoelectricity. The extracellular calcium activity dropped from 1.17 ± 0.14 mM to 0.18 ± 0.28 mM and the potassium activity rose from 3.4 ± 0.94 mM to 48 ± 12 mM (means ± SD). Minutes prior to this ionic change the levels of ATP, PCr, and phospholipids were unchanged while the levels of FFAs remained unchanged or slightly elevated. Following the first ionic change the steady-state levels of ATP decreased by 40%, from 2.42 to 1.56 μmol/g. PCr levels decreased by 75%, from 4.58 to 1.26 μmol/g. Simultaneously, the levels of FFAs increased from 338 to 642 nmol/g, arachidonic acid displaying the largest relative increase, 33 to 130 nmol/g. The first ionic change was followed by a short period of normalization of ionic concentrations followed by a sustained ionic change. This was accompanied by a small additional decrease in ATP (to 1.26 μmol/g). The FEA levels increased to 704 nmol/g. There was a highly sig nificant negative correlation between the levels of FFAs and the energy charge of the tissue. The formation of FFAs was accompanied by a decrease in the phospholipid pool. The largest relative decrease was observed in the inositol phosphoglycerides, followed by serine and ethanolamine phosphoglycerides. After 10 min of isoelectricity the levels of phospholipids had decreased by 5.12 μmol/g while the levels of FFAs had increased by 0.46 μmol/g, indicating oxidative metabolism or washout of the released FFAs. The attenuation of the rapid initial changes in the levels of the energy metabolites and FFAs as well as the correlation between the energy charge and the levels of FFAs suggests that a new steady state is established following the first ionic change. The importance of these reactions for the development of hypogiycemic neuronal damage is discussed.  相似文献   

10.
Abstract: Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in pentobarbital-anesthetized rats to maintain constant plasma specific activity for 1–10 min. At the end of infusion, animals were killed by microwave irradiation and analyzed for tracer specific activity and concentration in brain phospholipid, neutral lipid, and lipid precursor, i.e., unesterified arachidonate and arachidonoyl-CoA, pools. Tracer specific activity in brain unesterified arachidonate and arachidonoyl-CoA rose quickly ( t 1/2 < 1 min) to steady-state values that averaged <5% of plasma specific activity. Incorporation was rapid, as >85% of brain tracer was present in phospholipids at 1 min of infusion. The results demonstrate that unesterified arachidonate is rapidly taken up and incorporated in brain but that brain phospholipid precursor pools fail to equilibrate with plasma in short experiments. Low brain precursor specific activity may result from (a) dilution of label with unlabeled arachidonate from alternate sources or (b) precursor pool compartmentalization. The results suggest that arachidonate turnover in brain phospholipids is more rapid than previously assumed.  相似文献   

11.
Selective Increase in S-100β Protein by Aging in Rat Cerebral Cortex   总被引:1,自引:0,他引:1  
Changes in the concentrations of nervous tissue-related proteins and their isoproteins, such as S-100 proteins (S-100 alpha and S-100 beta), enolase isozymes (alpha-enolase and gamma-enolase), and GTP-binding proteins (Go alpha, Gi2 alpha, and beta-subunits), were determined in the CNS of male rats of various ages (from 2 to 30 months old) by means of enzyme immunoassay. The weights of brains and the concentrations of soluble proteins in the cerebral cortex, cerebellum, and brainstem were constant during the observation period. The concentration of S-100 beta protein, which is predominantly localized in glial cells, increased gradually in the cerebral cortex with age; levels in the 25-month-old rats increased to approximately 150% of the levels in the young (2-month-old) rats. However, the S-100 beta concentrations in the cerebellum and brainstem were relatively constant, showing similar values in rats 2-30 months old. Levels of other proteins, including both neuronal (gamma-enolase and Go alpha) and glial (alpha-enolase and S-100 alpha) marker proteins, did not change significantly with age in the cerebral cortex, cerebellum, and brainstem. These results suggest that there is a close relation between the age-dependent changes of the CNS function and S-100 beta protein levels in the cerebral cortex.  相似文献   

12.
In order to investigate changes in energy metabolism, neurotransmitters, and membrane disorder accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats was utilized. We measured concentrations of ATP, phosphocreatine (PCr), lactate (Lac), glucose (Glu), acetylcholine (ACh), choline (Ch), and -aminobutyric acid (GABA) in both the cerebral cortex and the subcortical regions after 1 h ischemia, 2 h ischemia, and 2 h reflow following 2 h ischemia, and then examined changes in concentrations of these substances during and after incomplete cerebral ischemia. Also examined were interrelations of changes in these substance levels during ischemia. In the cerebral cortex, levels of ATP, PCr, Glu, and ACh decreased, and levels of Lac, Ch, and GABA increased during ischemia. After recirculation, levels of ATP, PCr, Ch, and GABA tended to return to the normal range. On the other hand, the Lac level remained in the ischemic range and the Glu level rose and greatly exceeded the normal range. With regard to ACh, most animals showed normal levels but some exceeded the normal range. Changes in the subcortical regions were qualitatively the same as those in the cerebral cortex during and after ischemia (except with Glu), but only smaller in degrees. Glu levels remained unchanged during ischemia. Correlation of the levels of these substances in the cerebral cortex was examined using normal and ischemic values. A high correlation was generally observed between ATP and other substance levels. The relations between ATP and either PCr or Glu levels were linear. The relation between ATP and ACh levels was logarithmic. The relations between ATP and either Lac, Ch, or GABA levels were exponential. Namely, ACh, Lac, Ch, and GABA levels stayed constant until ATP fell to some fixed low level, suggesting the existence of a threshold. High correlations were also observed among Lac, Ch, and GABA levels.  相似文献   

13.
The influence of chronic cerebral hypoperfusion on cerebral energy metabolism was studied. The bilateral common carotid arteries of Wistar rats were occluded for 0, 2, 7, and 28 days. Cerebral energy metabolism was evaluated by assaying adenosine triphosphate (ATP), phosphocreatine (PCr), and lactate levels and measuring pyruvate dehydrogenase (PDH) activity (each time point, n = 6). Pathological changes were assessed light-microscopically by Klüver-Barrera staining and immunohistochemical labeling for astroglia (each time point, n = 3). There were no changes in ATP and PCr levels or PDH activity; there was slight but significant transient lactate accumulation at 2 days. Myelin pallor and increase in immuno-reactive astroglia were only observed at 28 days. These results indicate that chronic cerebral hypoperfusion induces delayed white matter changes in the corpus callosum of rat brain, but does not affect energy production.  相似文献   

14.
Regionally Selective Metabolic Effects of Hypoglycemia in Brain   总被引:12,自引:10,他引:2  
Abstract: Regional CNS levels of glucose reserves, glycolytic intermediates, and high-energy phosphate reserves were measured in insulin-treated, hypoglycemic rats and correlated with EEG activity. Intravenous administration of insulin to paralyzed, ventilated animals causes concomitant reduction of blood glucose levels and progressive abnormality and eventual loss of EEG activity. In all regions of brain examined, glucose and glycogen levels decrease until they are essentially depleted, and glucose-6-phosphate and fructose-1,6-biphosphate fall approximately 80%. Pyruvate levels decrease 50% in cerebral cortex and brain stem and a lesser amount in striatum, hippocampus, thalamus, and cerebellum. Lactate levels fall 50–60% in all regions except cerebellum, where no change is observed. ATP and phosphocreatine levels remain normal until the EEG is isoelectric, and then decrease in all regions except cerebellum. These results demonstrate that hypoglycemia does not have a uniform effect on brain glucose and energy metabolism, and cerebellum seems to be relatively protected.  相似文献   

15.
This study aimed to evaluate the adenine nucleotides and nucleoside concentration in serum and cerebral cortex of rats infected with Trypanosma evansi. Each rat was intraperitoneally infected with 1 × 10(6) trypomastigotes suspended in cryopreserved blood (Group A; n = 18). Twelve animals were used as controls (Group B). The infected animals were monitored daily by blood smears. At days 4 and 20 post-infection (PI) it was collected serum and cerebral cortex to measure the levels of ATP, ADP, AMP and adenosine by high performance liquid chromatography (HPLC). In serum there was a significant (P < 0.05) increase in the ATP, AMP and adenosine concentrations at days 4 and 20 PI in infected rats when compared to not-infected. Furthermore, in the cerebral cortex it was observed a significant (P < 0.05) increase in the concentrations of ATP, AMP and decreased adenosine levels at day 4 PI. At day 20 PI it was only observed an increase in the AMP and adenosine concentrations in cerebral cortex of infected rats when compared to not-infected. It was not observed any difference in ADP concentration in serum and brain at days 4 and 20 PI. No change was observed histologically in the cerebral cortex of infected animals. The results allow us to conclude that infection with T. evansi in rats causes an increase in the concentrations of ATP, AMP and adenosine in serum and cerebral cortex the time periods evaluated. These alterations occurred as a result of T. evansi infection which involves neurotransmission, neuromodulation and immune response impairment confirm the importance of the purinergic system in this pathology.  相似文献   

16.
Abstract: In vivo rates of palmitate incorporation into brain phospholipids were measured in awake rats following programmed intravenous infusion of unesterified [9,10-3H]palmitate to maintain constant plasma specific activity. Animals were killed after 2–10 min of infusion by microwave irradiation and analyzed for tracer distribution in brain phospholipid and phospholipid precursor, i.e., brain unesterified palmitate and palmitoyl-CoA, pools. [9,10-3H]Palmitate incorporation into brain phospholipids was linear with time and rapid, with >50% of brain tracer in choline-containing glycerophospholipids at 2 min of infusion. However, tracer specific activity in brain phospholipid precursor pools was low and averaged only 1.6–1.8% of plasma unesterified palmitate specific activity. Correction for brain palmitoyl-CoA specific activity increased the calculated rate of palmitate incorporation into brain phospholipids (0.52 nmol/s/g) by ∼60-fold. The results suggest that palmitate incorporation and turnover in brain phospholipids are far more rapid than generally assumed and that this rapid turnover dilutes tracer specific activity in brain palmitoyl-CoA pool owing to release and recycling of unlabeled fatty acid from phospholipid breakdown.  相似文献   

17.
Aluminum lactate was injected either intraperitoneally or stereotactically into the lateral cerebral ventricles of rats. Rats were killed at various times after treatment, and frontal cortex, hippocampus, and striatum were dissected out. Microtiter plate-based sandwich ELISA and immunohistochemistry were used to measure the glial fibrillary acidic protein (GFAP) concentration. GFAP levels were significantly decreased in frontal cortex 7 days after a single lateral ventricular injection of aluminum lactate and 14 days following systemic treatment. In contrast, neither hippocampus nor striatum exhibited any significant changes in the content of this astrocytic intermediate filament protein after aluminum treatment. Levels of a predominantly astroglial enzyme, glutamine synthetase, were also selectively reduced in the frontal cortex following intraventricular injection of aluminum. This depression exhibited a regional and temporal specificity similar to that found for GFAP. These results suggest a selective and progressive diminution of astrocytic responsivity in frontal cortex following either systemic or intraventricular aluminum dosing. The depression of GFAP levels reported here, which was found in the rat cerebral cortex 7-14 days after aluminum treatment in a species that does not form neurofilamentous aggregates, may reflect extended impairment of astrocytic function and suggests that these cells may be the primary targets of aluminum neurotoxicity.  相似文献   

18.
Cerebrocortical b-cytochromes have been found to be sensitive to reduction in the presence of CO and O2 in vivo. CO-mediated cytochrome b reduction responses in "bloodless" rats were correlated in this study with changes in concentrations of high energy and glycolytic intermediates measured in cortex after rapid brain freezing. Cytochrome redox state and metabolite concentrations also were compared with cerebral blood flow (CBF) and cerebral metabolic rate for O2 (CMRo2) measured before and after CO administration. No definite biochemical evidence of energy limitation was found in parietal cortex after the fluorocarbon-for-blood exchange; however, CO had direct effects on brain metabolite concentrations. Fifteen-minute CO exposures at inspired CO/O2 of 0.003-0.06 increased cerebrocortical phosphocreatine and ADP and decreased creatine concentration. CO exposure produced no significant changes in either ATP concentration or CMRo2, although CBF increased slightly. These findings may be interpreted to indicate that CO binding to cytochrome aa3 at low CO/O2 in vivo increases extramitochondrial pH relative to that within the mitochondrial matrix. In the process, cytochrome b reduction levels increase, possibly signaling an increased efficiency of oxidative phosphorylation relative to O2 uptake by unblocked respiratory chains.  相似文献   

19.
To determine if alterations in lipid composition and/or membrane order of cerebral microvessels may contribute to the age-related changes in blood-brain barrier (BBB) function, cerebral microvessels isolated from male Fischer 344 rats at 3 (young), 12 (intermediate age), and 24 (aged) months of age were studied. The steady state fluorescence polarization of diphenylhexatriene incorporated into isolated cerebral microvessel membranes at 35°C, in aged rats was not different compared to young rats (0.2787±0.0029 vs 0.2847±0.0049). In addition, the thermotropic transition temperature of these membranes was not altered with age. Moreover, the fatty acid composition, the double bond index as well as cholesterol to phospholipid molar ratios were not significantly altered with age. In contrast, the concentration of conjugated dienes in lipid extracts of cerebral microvessels of aged rats (10.04±1.10 O.D./mg phospholipids) was significantly increased compared to the concentration in young rats (6.98±0.52 O.D./mg phospholipids) (p<0.01). It is concluded that aging is not associated with significant changes in lipid composition or membrane order of cerebral microvessels. However, the increased concentration of conjugated dienes in cerebral microvessels of aged rats is indicative of ongoing free radical damage in these microvessels which may contribute to the age-related changes in BBB function.  相似文献   

20.
Plasma metabolites, including triglycerides, beta -hydroxybutyrate, and glycerol, can be used to estimate mass change in birds. Although dietary fatty acids can be ingested and absorbed as phospholipids, they have been largely overlooked as a potential indicator of mass change. The plasma ratio of triglyceride to phospholipid could also provide insight into diet quality because a high ratio in food items indicates high relative energy content. Variability in dietary phospholipid content and triglyceride : phospholipid may also affect the relationships between metabolites and mass change. We fed Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) diets differing in phospholipid content and triglyceride : phospholipid and measured metabolites during mass loss and mass gain. Plasma phospholipids were higher and triglyceride : phospholipid was lower in birds fed a diet higher in phospholipid content and lower in triglyceride : phospholipid. Contrary to our expectations, plasma phospholipids were negatively related to mass change. Plasma triglyceride levels were positively related to mass change and unaffected by diet. The relationships between mass change and both plasma beta -hydroxybutyrate and glycerol were affected by diet. Plasma triglyceride appears to be the most reliable metabolite predicting body mass changes, but inclusion of plasma phospholipids and triglyceride : phospholipid into metabolite profiles may provide additional information on diet quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号