首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A comparative ultrastructural study was made of both thin- and thick-walled oocysts of Cryptosporidium parvum. According to the authors' findings, all the oocysts in C. parvum should be considered as thin-walled, since their walls have been composed of a single membrane or of two, closely apposed membranes without any additional substance in between. Despite the presence of two types of wall-forming bodies (WFB) in the maturing macrogamete or zygote, there is no evidence of their involvement in oocyst wall formation. In this concern, the function and destiny of WFB in C. parvum oocysts still remain obscure. Similar structure of the oocysts wall was reported elsewhere for thin-walled oocysts of fish coccidia of the genera Goussia and Eimeria. In C. parvum, the "thick-walled" oocysts differ from oocysts with thin walls in the availability in the former of a single sporocyst. The sporocyst wall consists of two unequal layers: a thin outer layer and a thicker inner one, in which a characteristic suture line is occasionally seen. By this feature the thick-walled oocysts of C. parvum bear similarities with oocysts of the cyst-forming coccidia (Cystoisospora, Toxoplasma, Sarcocystis) and of the genus Goussia: in all these the valves making up the sporocyst wall are joint just along the suture line. The literary and the authors' own data make it possible to suppose that the suture detected in C. parvum oocysts is located in the sporocyst wall, joining its valves, rather than in the oocyst wall proper, known to be composed of one or two, closely apposed unit membranes. Again, the availability of a suture (or sutures) in the sporocyst hardly provides enough reason to relate C. parvum with either cyst-forming, or fish coccidia, since this structure itself may be of a convergency character, rather than of systematic value. This may be substantiated, at least in part, by the authors' previous findings (Beyer, Sidorenko, 1984) of a similar structure, originally referred to as a "slit channel", in the intraerythrocytic capsule around gamont stage of haemogregarines--the adeleid coccidia of the genus Karyolysus. The suture-like structure could have originated in the evolution independently in different groups of parasitic protozoa to serve eventually as a suitable mechanism for immediate separation of elements involved in protective formation harbouring different developmental stages, including, for example, sporozoites in the eimeriid coccidia, or gamonts in the adeleid coccidia.  相似文献   

2.
Ultrastructural studies were conducted on asexual developmental stages of C. parvum in the ileal fragment of the intestine of 10-11 day old rats experimentally infected with oocysts isolated from calf feces. A young trophozoite is covered with the typical trimembranous apicomplexan pellicle. As the parasite grows, the inner complex of its apical pellicle, facing the host enterocyte, is seen to reduce up to a unit membrane to make a complex multimembranous "feeding organelle" which is in contact with a thick electron dense band bordering the host-parasite interface. It looks likely that no micropores or any other feeding structures exist in the parasite. Unlike, the opposite body part of the trophozoite, facing the lumen of the intestine, preserves its trimembranous pellicle. Two merozoite generations were followed. In addition to numerous ribosomes, rhoptries, micronemes, and trimembranous pellicle, subpellicular microtubules were observed in the segmenting merozoites. The merogony follows the pattern of ectomeric schizogony. However, no details of nuclear division were detected. The whole cytoplasm of the mother meront is completely used up for the merozoite formation without any residual mass to be left.  相似文献   

3.
A technique was developed for immunolabeling Cryptosporidium parvum oocysts for subsequent observation by transmission electron microscopy. This method was developed to maintain architectural integrity of the oocyst wall and improve fixation of internal contents. The improved fixation and embedding method permits efficient immunolabeling of both nonexcysted and excysted C. parvum oocysts and may be applicable to other oocyst- and cyst-forming protozoa.  相似文献   

4.
Methods previously described for artificially excysting coccidia were applied to oocysts and sporocysts of Sarcocystis suicanis recovered from the intestinal mucosa of experimentally infected dogs. Observations with a scanning electron microscope showed that sporocysts consisted of 4 plates, each with a series of accessory veinations; plate margins joined at obtuse angles; plates separated at their margins and curled inward, allowing the sporozoites to escape. Transmission electron microscopy suggested that the sporocyst wall is ultrastructurally similar to that of other coccidia.  相似文献   

5.
The successful propagation of Cryptosporidium parvum in cell-free culture medium was recently reported. To investigate whether this phenomenon could be broadened to include other C. parvum isolates, as well as Cryptosporidium hominis, we attempted to propagate 3 isolates in cell-free medium under reported culture conditions. Cryptosporidium oocysts from C. parvum strains Moredun (MD) or IOWA or C. hominis strain TU502 were added to media containing coagulated newborn calf serum. The cultures were sampled at various times throughout a 45 (IOWA) or 78 (MD, TU502)-day period and were microscopically examined for various life stages of Cryptosporidium. Cell-free cultures harvested on days 45 and 68 postinoculation were tested for in vitro infectivity on Madrin-Darby bovine kidney cells. In vivo infectivity testing was performed using either infant or 2-wk-old immunosuppressed C57BL mice with cell-free cultures harvested on days 52 and 78. Fecal and gut samples collected from mice were examined by modified acid-fast staining. Data from wet mounts, electron microscopy, and in vitro and in vivo infectivity testing showed that the original oocysts did not complete their life cycle and produce new, viable, infectious oocysts in cell-free culture. Thus, we conclude that this is not a universal phenomenon or readily accomplished.  相似文献   

6.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

7.
日本血吸虫胞蚴期超微结构的初步观察   总被引:1,自引:0,他引:1  
本文用扫描与透射电镜观察了我国大陆品系37日和45日龄日本血吸虫母胞蚴及其体内未成熟子胞蚴体被的结构。同时观察了取自螺肝组织的62日龄成熟子胞蚴。初次揭示日本血吸虫胞蚴期体被的超微结构,基本上与曼氏血吸虫胞蚴期相似。日本血吸虫母胞蚴和成熟子胞蚴除体被无体棘外,其他很相似。比较未成熟的子胞蚴与未成熟的尾蚴,揭示外质膜由两层结构构成;随后,外层结构溶化消失,而同时出现微绒毛。构成这样母子二代胞蚴及其体内胚胎既相同又有差别,认为与幼虫寄生部位及生殖生理状态有关。  相似文献   

8.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

9.
Within the coccidia, morphological features of the oocyst stage at the light microscope level have been used more than any other single characteristic to designate genus and species. The aim of this study was to conduct morphometric analysis on a range of Cryptosporidium spp. isolates and to compare morphological data between several genotypes of C. parvum and a second species C. canis, as well as a variation within a specific genotype (the human genotype), with genetic data at 2 unlinked loci (18S ribonucleic deoxyribonucleic acid and HSP 70) to evaluate the usefulness of morphometric data in delineating species within Cryptosporidium. Results indicate that morphology could not differentiate between oocysts from C. parvum genotypes and oocysts from C. canis, whereas genetic analysis clearly differentiated between the two. The small size of the Cryptosporidium spp. oocyst, combined with the very limited characters for analysis, suggests that more reliance should be placed on genetic differences, combined with biological variation, when delineating species within Cryptosporidium.  相似文献   

10.
A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.  相似文献   

11.
Monoclonal antibodies (MAb) were prepared against the 40-kDa capsid protein of Cryptosporidium parvum virus (CPV) by immunizing mice with purified recombinant CPV40 protein. In immunoblotting analysis, MAbCPV40-1 bound to a 40-kDa protein in extracts of C. parvum oocysts. This 40-kDa protein was localized in the sporozoite cytoplasm by immunofluorescence (IFA) staining with MAbCPV40-1. In a dot-blot assay, MAbCPV40-1 was capable of detecting 10(2) non-bleach-treated and 10(2)-10(3) bleach-treated C. parvum oocysts. MAbCPV40-1 was capable of detecting CPV40 antigen in both soluble and total C. parvum oocyst protein extracts, indicating a potential use for detecting this parasite in environmental samples.  相似文献   

12.
Cryptosporidium parvum oocysts isolated from calf feces were examined by scanning electron microscopy during excystation. Intact C. parvum oocysts were spheroid to ellipsoid, approximately equal to 3.5 X 4.0 micron, with length : width ratio = 1.17. The oocyst wall had a single suture at one pole, which spanned 1/3 to 1/2 the circumference of the oocyst. During excystation the suture dissolved, resulting in a slit-like opening, which the sporozoites used to exit the oocyst. Sporozoites were 3.8 X 0.6 micron and had a rough outer surface.  相似文献   

13.
Each of SPF mice(Scl: ICR strain, 3-week-old males) was inoculated with 5 x 10(4) oocysts of Cryptosporidium by stomach tube. The oocysts were large type one which was previously isolated from Korean mice, and passaged in 3-week-old SPF mice. The patterns of oocyst discharge were monitored daily, and in order to observe the ultrastructure of developmental stages the stomach of the mice was examined by transmission electron microscopy (TEM) at 4 weeks post-inoculation. The prepatent period for 6 mice was 5.6 days post-inoculation on the average, and the patent period was 63.2 days. The number of oocysts discharged per day from the mice reached peak on day 36.6 post-inoculation on the average. A large number of oocysts were found in fecal samples obtained from inoculated mice on days 30-50 post-inoculation. C. muris was larger than C. parvum at almost every developmental stages, the size difference being 1.4 times in oocysts, 2.4 times in sporozoites, 1.6 times in merozoites, and 1.5 times in microgametes. The ultrastructural features of the attachment site of C. muris to the mucus cells were remarkably different from those of C. parvum and its closely related species. The anterior projection of the protozoa (C. muris), the outer aspect of which was surrounded by a thick filamentous process of the host cell, has not been reported at any developmental stages of C. parvum or its closely related species. The size of the oocysts of strain RN 66 was larger than that of Korean mice origin. The above results reveal that the large type Cryptosporidium of Korean mice origin is identified as Cryptosporidium muris and this type was named as C. muris (strain MCR).  相似文献   

14.
A method to detect viable Cryptosporidium parvum oocysts was developed. Polyclonal immunoglobulin G against C. parvum oocyst and sporozoite surface antigens was purified from rabbit immune serum, biotinylated, and bound to streptoavidin-coated magnetic particles. C. parvum oocysts were captured by a specific antigen-antibody reaction and magnetic separation. The oocysts were then induced to excyst, and DNA was extracted by heating at 95 degrees C for 10 min. A 452-bp fragment of C. parvum DNA was amplified by using a pair of C. parvum-specific primers in PCR. The method detected as few as 10 oocysts in purified preparations and from 30 to 100 oocysts inoculated in fecal samples. The immunomagnetic capture PCR (IC-PCR) product was identified and characterized by a nested PCR that amplified a 210-bp fragment, followed by restriction endonuclease digestion of the IC-PCR and nested-PCR products at the StyI site and a nonradioactive hybridization using an internal oligonucleotide probe labeled with biotin. PCR specificity was also tested, by using DNAs from other organisms as templates. In the control experiments, inactivated oocysts were undetectable, indicating the ability of this method to differentiate between viable and nonviable oocysts. Thus, this system can be used to specifically detect viable C. parvum oocysts in environmental samples with great sensitivity, providing an efficient way to monitor the environment for C. parvum contamination.  相似文献   

15.
Cryptosporidium sp. from guinea pigs and C. parvum were compared morphologically, electrophoretically, and for the ability to infect suckling mice. Oocysts from guinea pigs measured 5.4 x 4.6 (4.8-5.6 x 4.0-5.0) microns and had a shape index (length/width) of 1.17 (1.04-1.33). Oocysts of C. parvum were similar and measured 5.2 x 4.6 (4.8-5.6 x 4.2-4.8) microns with a shape index of 1.16 (1.04-1.33). All suckling mice inoculated with oocysts of C. parvum became infected, whereas most, but not all, mice fed oocysts of the guinea pig isolate also became infected. However, mice inoculated with oocysts from guinea pigs produced on average 100-fold fewer oocysts by day 7 postinoculation than did mice infected with C. parvum, and the resulting infections were sparse and patchy along the ileum. Electrophoretic profiles were similar, but 125I surface labeling of outer oocyst wall proteins revealed striking differences between the two isolates. Cryptosporidium parvum had a wide molecular size range of 125I-labeled bands, whereas C. sp. from guinea pigs had a banding pattern clustered between 39 and 66 kDa, with a smaller number of bands greater than 100 kDa.  相似文献   

16.
Cryptosporidium parvum has been associated with outbreaks of human illness by consumption of contaminated water, fresh fruits, and vegetables. Free-living nematodes may play a role in pathogen transmission in the environment. Caenorhabditis elegans is a free-living soil nematode that has been extensively studied and serves as a good model to study possible transmission of C. parvum oocysts that may come into contact with produce before harvest. The objective of this study was to determine whether C. elegans could serve as a potential mechanical vector for transport of infectious C. parvum and Cyclospora cayetanensis in agricultural settings and whether C. elegans could ingest, excrete, and protect oocysts from desiccation. Seventy to 85% of worms ingested between 0 and 500 oocysts after 1 and 2 hr incubation with oocysts. Most of the nematodes ingested between 101 and 200 oocysts after 2 hr. Intact oocysts and empty shells were excreted by nematodes. Infectivity was determined by the neonatal assay with different treatments of worms (intact or homogenized) or oocysts or both. Adult C. elegans containing C. parvum kept in water were infective for mice. In conclusion, C. elegans adults can ingest and excrete C. parvum oocysts. Caenorhabditis elegans containing C. parvum oocysts can infect mice but does not seem to protect oocysts from extreme desiccation at 23 C incubation of a day or longer. Cyclospora oocysts were not ingested by C. elegans. The role of free-living nematodes in produce contamination needs to be further examined.  相似文献   

17.
Chromosomal DNA from 5 isolates of Cryptosporidium parvum and 1 of C. baileyi were compared by field-inversion gel electrophoresis (FIGE). FIGE analyses of parasite DNA prepared from purified sporozoites versus intact oocysts showed no observable differences. Chromosomal DNA migration patterns of the 5 C. parvum isolates were indistinguishable, whereas similar but distinct differences were evident between C. baileyi and the isolates of C. parvum. Oocyst-reactive monoclonal antibodies differentiated oocysts of C. parvum from those of C. baileyi but were unable to distinguish oocysts of 1 isolate of C. parvum from another.  相似文献   

18.
AIM: To determine whether batch solar disinfection (SODIS) can be used to inactivate oocysts of Cryptosporidium parvum and cysts of Giardia muris in experimentally contaminated water. METHODS AND RESULTS: Suspensions of oocysts and cysts were exposed to simulated global solar irradiation of 830 W m(-2) for different exposure times at a constant temperature of 40 degrees C. Infectivity tests were carried out using CD-1 suckling mice in the Cryptosporidium experiments and newly weaned CD-1 mice in the Giardia experiments. Exposure times of > or =10 h (total optical dose c. 30 kJ) rendered C. parvum oocysts noninfective. Giardia muris cysts were rendered completely noninfective within 4 h (total optical dose >12 kJ). Scanning electron microscopy and viability (4',6-diamidino-2-phenylindole/propidium iodide fluorogenic dyes and excystation) studies on oocysts of C. parvum suggest that inactivation is caused by damage to the oocyst wall. CONCLUSIONS: Results show that cysts of G. muris and oocysts of C. parvum are rendered completely noninfective after batch SODIS exposures of 4 and 10 h (respectively) and is also likely to be effective against waterborne cysts of Giardia lamblia. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate that SODIS is an appropriate household water treatment technology for use as an emergency intervention in aftermath of natural or man-made disasters against not only bacterial but also protozoan pathogens.  相似文献   

19.
Cryptosporidium canis n. sp. from domestic dogs.   总被引:9,自引:0,他引:9  
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts approximately 90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.  相似文献   

20.
The transfer of Cryptosporidium oocysts from the surface water to the sediment beds of streams and rivers influences their migration in surface waters. We used controlled laboratory flume experiments to investigate the deposition of suspended Cryptosporidium parvum oocysts in streambeds. The experimental results demonstrate that hydrodynamic interactions between an overlying flow and a sediment bed cause oocysts to accumulate in the sediments and reduce their concentrations in the surface water. The association of C. parvum with other suspended sediments increased both the oocysts' effective settling velocity and the rate at which oocysts were transferred to the sediment bed. A model for the stream-subsurface exchange of colloidal particles, including physical transport and physicochemical interactions with sediment grains, accurately represented the deposition of both free C. parvum oocysts and oocysts that were attached to suspended sediments. We believe that these pathogen-sediment interactions play an important role in regulating the concentrations of Cryptosporidium in streams and rivers and should be taken into consideration when predicting the fate of pathogens in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号