首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine what effect maturation promoting factor (MPF, p34 cdc2 kinase/cyclin B) phosphorylation has on nucleolin’s distribution during mitotic nucleolar disassembly and reassembly, we altered Chinese hamster ovary (CHO) nucleolin (the N protein) such that it cannot be phosphorylated by p34 cdc2 . As expected, the transiently expressed epitope-tagged N protein showed no apparent defect in nucleolar localization in interphase CHO cells, even after hypotonic shock and recovery to quickly disassemble and then reassemble interphase nucleoli. In mitotic CHO cells, the N protein localized to the perichromosomal sheath and the cytoplasm, as is typical for nucleolin. Similar to epitope-tagged wild-type nucleolin, the N protein also maintained its association with persistent nucleoli characteristic of mitotic Chinese hamster lung (Dede) cells. In synchronized HeLa cells, the N protein again localized to the perichromosomal sheath and the cytoplasm as nucleoli disassembled during prophase. In HeLa cell telophase, the N protein localized normally to nucleolus-derived foci within the cytoplasm and prenucleolar bodies within reforming nuclei. The observations indicate that MPF phosphorylation is not essential for nucleolin’s localizations to the perichromosomal sheath and the cytoplasm during prophase and metaphase, and that functional MPF phosphorylation sites are not essential for nucleolin’s localizations during nucleologenesis. Accepted: 15 April 1999  相似文献   

2.
Ki-67 protein has been widely used as a proliferation marker for human tumor cells for decades. In recent studies, multiple molecular functions of this large protein have become better understood. Ki-67 has roles in both interphase and mitotic cells, and its cellular distribution dramatically changes during cell cycle progression. These localizations correlate with distinct functions. For example, during interphase, Ki-67 is required for normal cellular distribution of heterochromatin antigens and for the nucleolar association of heterochromatin. During mitosis, Ki-67 is essential for formation of the perichromosomal layer (PCL), a ribonucleoprotein sheath coating the condensed chromosomes. In this structure, Ki-67 acts to prevent aggregation of mitotic chromosomes. Here, we present an overview of functional roles of Ki-67 across the cell cycle and also describe recent experiments that clarify its role in regulating cell cycle progression in human cells.  相似文献   

3.
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and gamma-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.  相似文献   

4.
Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing factor SC35 in interphase and mitotic cells. In HeLa cells expressing green fluorescent protein (GFP)-SC35, this was localized in speckles during interphase and dispersed in metaphase. In telophase, GFP-SC35 was highly enriched within telophase nuclei and also detected in MIGs. Fluorescence recovery after photobleaching (FRAP) experiments revealed that the mobility of GFP-SC35 was distinct in different mitotic compartments. Interestingly, the mobility of GFP-SC35 was 3-fold higher in the cytoplasm of metaphase cells compared with interphase speckles, the nucleoplasm or MIGs. Treatment of cells with inhibitors of cyclin-dependent kinases (cdks) caused changes in the organization of nuclear compartments such as nuclear speckles and nucleoli, with corresponding changes in the mobility of GFP-SC35 and GFP-fibrillarin. Our results suggest that the dynamics of SC35 are significantly influenced by the organization of the compartment in which it is localized during the cell cycle.  相似文献   

5.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two-dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2-specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis-specific phosphopeptides and can reversibly increase the detergent-solubility of lamin B2. However, the M-phase-like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.  相似文献   

6.
K Riabowol  G Draetta  L Brizuela  D Vandre  D Beach 《Cell》1989,57(3):393-401
A homolog of the fission yeast cdc2-encoded protein kinase (p34) is a component of M phase promoting factor in Xenopus oocytes. The homologous kinase in human HeLa cells is maximally active during mitosis, suggesting a mitotic role in mammalian somatic cells. This has been directly investigated by microinjection of anti-p34 antibodies into serum-stimulated rat fibroblasts. DNA synthesis was unaffected but cell division was quantitatively blocked in injected cells. Injection of antibodies against p13suc1, a component of the p34 kinase complex, did not block mitosis but caused mitotic abnormalities resulting in cells containing multiple micronuclei in the subsequent interphase. p34 localized in the nucleus during interphase. During mitosis, a fraction tightly associated with centrosomes. p13 was more evenly distributed between the nucleus and cytoplasm. These observations demonstrate that cdc2 is a nuclear and centrosomal protein that is required for mitosis in mammalian cells.  相似文献   

7.
Cyclin A (CycA), the only essential mitotic cyclin in Drosophila, is cytoplasmic during interphase and accumulates in the nucleus during prophase. We show that interphase localization is mediated by Leptomycin B (LMB)-sensitive nuclear export. This is a feature shared with human CyclinB1, and it is assumed that nuclear accumulation is necessary for mitotic entry. Here, we tested if the unique mitotic function of CycA requires nuclear accumulation. We fused subcellular localization signals to CycA and tested their mitotic capability. Surprisingly, nuclear accumulation was not required, and even a membrane-tethered form of CycA was able to induce mitosis. We noted that Cyclin B (CycB) protein disappears prematurely in CycA mutants, reminiscent of rca1 mutants. Rca1 is an inhibitor of Fizzy-related-APC/C activity, and in rca1 mutants, mitotic cyclins are degraded in G2 of the 16(th) embryonic cell cycle. Overexpression of Rca1 can restore mitosis in CycA mutants, indicating that the mitotic failure of CycA mutants is caused by premature activation of the APC/C. The essential mitotic function of CycA is therefore not the activation of numerous mitotic substrates by Cdk1-dependent phosphorylation. Rather, CycA-dependent kinase activity is required to inhibit one inhibitor of mitosis, the Fzr protein.  相似文献   

8.
Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy.The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase NuSAP-chromatin interaction suggests additional functions for NuSAP, as recently identified for other nuclear spindle assembly factors with a role in gene expression or DNA damage response.  相似文献   

9.
The essential Aurora B kinase is a chromosomal passenger protein that is required for mitotic chromosome alignment and segregation. Aurora B function is dependent on the chromosome passenger, INCENP. INCENP, in turn, requires sister chromatid cohesion for its appropriate behaviour. Relatively few substrates have been identified for Aurora B, so that the precise role it plays in controlling mitosis remains to be elucidated. To identify potential novel mitotic substrates of Aurora B, extracted chromosomes were prepared from mitotically-arrested HeLa S3 cells and incubated with recombinant human Aurora B in the presence of radioactive ATP. Immunoblot analysis confirmed the HeLa scaffold fraction to be enriched for known chromosomal proteins including CENP-A, CENP-B, CENP-C, ScII and INCENP. Mass spectrometry of bands excised from one-dimensional polyacrylamide gels further defined the protein composition of the extracted chromosome fraction. Cloning, fluorescent tagging and expression in HeLa cells of the putative GTP-binding protein NGB/CRFG demonstrated it to be a novel mitotic chromosome protein, with a perichromosomal localisation. Identi fication of the protein bands corresponding to those phosphorylated by Aurora B revealed topoisomerase II alpha (topo IIα) as a potential Aurora B substrate. Purified recombinant human topo IIα was phosphorylated by Aurora B in vitro, confirming this proteomic approach as a valid method for the initial definition of candidate substrates of key mitotic kinases.  相似文献   

10.
Chromatin-bound histone 1 kinase activity in synchronized HeLa S3 cells   总被引:1,自引:0,他引:1  
The chromatin-bound H1 kinase activity of HeLa S3 cells that had been synchronized with 2.7 mM thymidine for 24 h has been followed during their progression into mitosis. They were arrested at this stage of the cell cycle by adding 0.13 microM nocodazole 8 h after the removal of thymidine. The kinase was partially purified by extracting chromatin proteins with 0.4 M NaCl and fractionation with ammonium sulfate (17.5-35%), a procedure in which a significant amount of in vivo histone 1 phosphorylating activity was retained. H1 kinase activity increased as the cells entered mitosis, rising to a maximum level sevenfold higher than interphase as the mitotic index reached about 50%. A rapid decrease in activity followed this maximum approximately 2 h after cells started to accumulate in mitosis. At this time, the mitotic index was still increasing, although at a lower rate than during the increase of the kinase activity. Other protein kinase activities measured by using core histones, casein, and protamine as substrates remained fairly constant at a comparatively low level. HeLa H1 kinase activity was further distinguished from several known protein kinase activities by the lack of stimulation or inhibition with known modulators of protein phosphorylating activities.  相似文献   

11.
Receptor-mediated endocytosis is inhibited during mitosis in mammalian cells and earlier work on A431 cells suggested that one of the sites inhibited was the invagination of coated pits (Pypaert, M., J. M. Lucocq, and G. Warren. 1987. Eur. J. Cell Biol. 45: 23-29). To explore this inhibition further, we have reproduced it in broken HeLa cells. Mitotic or interphase cells were broken by freeze-thawing in liquid nitrogen and warmed in the presence of mitotic or interphase cytosol. Using a morphological assay, we found invagination to be inhibited only when mitotic cells were incubated in mitotic cytosol. This inhibition was reversed by diluting the cytosol during the incubation. Reversal was sensitive to okadaic acid, a potent phosphatase inhibitor, showing that phosphorylation was involved in the inhibition of invagination. This was confirmed using purified cdc2 kinase which alone could partially substitute for mitotic cytosol.  相似文献   

12.
Cross-linking between the actin cytoskeleton and plasma membrane actin-binding proteins is a key interaction responsible for the mechanical properties of the mitotic cell. Little is known about the identity, the localization, and the function of actin filament-binding proteins during mitosis in human hepatic stellate cells (hHSC). The aim of the present study was to identify and analyze the cross talk between actin and myristoylated alanine-rich kinase C substrate (MARCKS), an important PKC substrate and actin filament-binding protein, during mitosis in primary hHSC. Confocal analysis and chromosomal fraction analysis of mitotic hHSC demonstrated that phosphorylated (P)-MARCKS displays distinct phase-dependent localizations, accumulates at the perichromosomal layer, and is a centrosomal protein belonging to the chromosomal cytosolic fraction. Aurora B kinase (AUBK), an important mitotic regulator, β-actin, and P-MARCKS concentrate at the cytokinetic midbody during cleavage furrow formation. This localization is critical since MARCKS-depletion in hHSC is characterized by a significant loss in cytosolic actin filaments and cortical β-actin that induces cell cycle inhibition and dislocation of AUBK. A depletion of AUBK in hHSC affects cell cycle, resulting in multinucleation. Quantitative live cell imaging demonstrates that the actin filament-binding capacity of MARCKS is key to regulate mitosis since the cell cycle inhibitory effect in MARCKS-depleted cells caused abnormal cell morphology and an aberrant cytokinesis, resulting in a significant increase in cell cycle time. These findings implicate that MARCKS, an important PKC substrate, is essential for proper cytokinesis and that MARCKS and its partner actin are key mitotic regulators during cell cycle in hHSC.  相似文献   

13.
Structural maintenance of chromosomes (SMC) family proteins play critical roles in structural changes of chromosomes. Previously, we identified two human SMC family proteins, hCAP-C and hCAP-E, which form a heterodimeric complex (hCAP-C-hCAP-E) in the cell. Based on the sequence conservation and mitotic chromosome localization, hCAP-C-hCAP-E was determined to be the human ortholog of the Xenopus SMC complex, XCAP-C-XCAP-E. XCAP-C-XCAP-E is a component of the multiprotein complex termed condensin, required for mitotic chromosome condensation in vitro. However, presence of such a complex has not been demonstrated in mammalian cells. Coimmunoprecipitation of the endogenous hCAP-C-hCAP-E complex from HeLa extracts identified a 155-kDa protein interacting with hCAP-C-hCAP-E, termed condensation-related SMC-associated protein 1 (CNAP1). CNAP1 associates with mitotic chromosomes and is homologous to Xenopus condensin component XCAP-D2, indicating the presence of a condensin complex in human cells. Chromosome association of human condensin is mitosis specific, and the majority of condensin dissociates from chromosomes and is sequestered in the cytoplasm throughout interphase. However, a subpopulation of the complex was found to remain on chromosomes as foci in the interphase nucleus. During late G(2)/early prophase, the larger nuclear condensin foci colocalize with phosphorylated histone H3 clusters on partially condensed regions of chromosomes. These results suggest that mitosis-specific function of human condensin may be regulated by cell cycle-specific subcellular localization of the complex, and the nuclear condensin that associates with interphase chromosomes is involved in the reinitiation of mitotic chromosome condensation in conjunction with phosphorylation of histone H3.  相似文献   

14.
A pool of 10 calmodulin-binding proteins (CBPs) was isolated from Chinese hamster ovary (CHO) cells via calmodulin (CaM)-Sepharose affinity chromatography. One of these ten isolated CBPs with a molecular mass of 52 kD was also found to be present in isolated CHO cell mitotic spindles. Affinity-purified antibodies generated against this pool of isolated CBPs recognize a single 52-kD protein in isolated CHO cell mitotic spindles by immunoblot analysis. Immunofluorescence examination of CHO, 3T3, NRK, PTK-2, and HeLa cells resulted in a distinct pattern of mitotic spindle fluorescence. The localization pattern of this 52-kD CBP directly parallels that of CaM in the spindle apparatus throughout the various stages of mitosis. Interestingly, there was no association of this 52-kD CBP with cytoplasmic microtubules. As is the case with CaM, the localization pattern of the 52-kD CBP in interphase cells is diffuse within the cytoplasm and is not associated with any discrete, cellular structures. This 52-kD CBP appears to represent the first mitotic spindle-specific calmodulin-binding protein identified and represents an initial step toward the ultimate determination of CaM function in the mitotic spindle apparatus.  相似文献   

15.
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface‐exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty‐eight surface and surface‐associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis‐selective cell surface localization of protocadherin PCDH7, a member of a family with anti‐adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti‐mitotic cancer chemotherapy.  相似文献   

16.
The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.  相似文献   

17.
RNF4, a SUMO-targeted ubiquitin ligase (STUbL), localizes to the nucleus and functions in the DNA damage response during interphase of the cell cycle. RNF4 also exists in cells undergoing mitosis, where its regulation and function remain poorly understood. Here we showed that administration of etoposide, an anticancer DNA topoisomerase II poison, to mitotic human cervical cancer HeLa cells induced SUMO-2/3-dependent localization of RNF4 to chromosomes. The FK2 antibody signals, indicative of poly/multi-ubiquitin assembly, were detected on etoposide-exposed mitotic chromosomes, whereas the signals were negligible in cells depleted for RNF4 by RNA interference. This suggests that RNF4 functions as a STUbL in the etoposide-induced damage response during mitosis. Indeed, RNF4-depletion sensitized mitotic HeLa cells to etoposide and increased cells with micronuclei. These results indicate the importance of the RNF4-mediated STUbL pathway during mitosis for the maintenance of chromosome integrity and further implicate RNF4 as a target for topo II poison-based therapy for cancer patients.  相似文献   

18.
Centromere protein CENP-A is a histone H3-like protein associated specifically with the centromere and represents one of the human autoantigens identified by sera taken from patients with the CREST variant of progressive systemic sclerosis. Injection of whole human autoimmune serum to the centromere into interphase cells disrupts some mitotic events. It has been assumed that this effect is due to CENP-E and CENP-C autoantigens, because of the effects of injecting monospecific sera to those proteins into culture cells. Here we have used an antibody raised against an N-terminal peptide of the human autoantigen CENP-A to determine its function in mitosis and during cell cycle progression. Affinity-purified anti-CENP-A antibodies injected into the nucleus during the early replication stages of the cell cycle caused cells to arrest in interphase before mitosis. These cells showed highly condensed small nuclei, a granular cytoplasm and loss of their division capability. On the other hand, microinjection of nocodazole-blocked HeLa cells in mitosis resulted in the typical punctate staining pattern of CENP-A for centromeres during different stages of mitosis and apparently normal cell division. This was corroborated by time-lapse imaging microscopy analysis of mid-interphase-injected cells, revealing that they undergo mitosis and divide properly. However, a significant delay throughout the progression of mitotic stages was observed. These results suggest that CENP-A is involved predominantly in an essential interphase event at the centromere before mitosis. This may include chromatin assembly at the kinetochore coordinate with late replication of satellite DNA to form an active centromere. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

19.
20.
Phosphorylation on Ser 19 of the myosin II regulatory light chain by myosin light chain kinase (MLCK) regulates actomyosin contractility in smooth muscle and vertebrate nonmuscle cells. The smooth/nonmuscle MLCK gene locus produces two kinases, a high molecular weight isoform (long MLCK) and a low molecular weight isoform (short MLCK), that are differentially expressed in smooth and nonmuscle tissues. To study the relative localization of the MLCK isoforms in cultured nonmuscle cells and to determine the spatial and temporal dynamics of MLCK localization during mitosis, we constructed green fluorescent protein fusions of the long and short MLCKs. In interphase cells, localization of the long MLCK to stress fibers is mediated by five DXRXXL motifs, which span the junction of the NH(2)-terminal extension and the short MLCK. In contrast, localization of the long MLCK to the cleavage furrow in dividing cells requires the five DXRXXL motifs as well as additional amino acid sequences present in the NH(2)-terminal extension. Thus, it appears that nonmuscle cells utilize different mechanisms for targeting the long MLCK to actomyosin structures during interphase and mitosis. Further studies have shown that the long MLCK has twofold lower kinase activity in early mitosis than in interphase or in the early stages of postmitotic spreading. These findings suggest a model in which MLCK and the myosin II phosphatase (Totsukawa, G., Y. Yamakita, S. Yamashiro, H. Hosoya, D.J. Hartshorne, and F. Matsumura. 1999. J. Cell Biol. 144:735-744) act cooperatively to regulate the level of Ser 19-phosphorylated myosin II during mitosis and initiate cytokinesis through the activation of myosin II motor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号