首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fungi are ideal model organisms for dissecting the genomic bases of adaptive divergence in eukaryotes. They have simple morphologies and small genomes, occupy contrasting, well‐identified ecological niches and tend to have short generation times, and many are amenable to experimental approaches. Fungi also display diverse lifestyles, from saprotrophs to pathogens or mutualists, and they play extremely important roles in both ecosystems and human activities, as wood decayers, mycorrhizal fungi, lichens, endophytes, plant and animal pathogens, and in fermentation or drug production. We review here recent insights into the patterns and mechanisms of adaptive divergence in fungi, including sources of divergence, genomic variation and, ultimately, speciation. We outline the various ecological sources of divergent selection and genomic changes, showing that gene loss and changes in gene expression and in genomic architecture are important adaptation processes, in addition to the more widely recognized processes of amino acid substitution and gene duplication. We also review recent findings regarding the interspecific acquisition of genomic variation and suggesting an important role for introgression, hybridization and horizontal gene transfers (HGTs). We show that transposable elements can mediate several of these genomic changes, thus constituting important factors for adaptation. Finally, we review the consequences of divergent selection in terms of speciation, arguing that genetic incompatibilities may not be as widespread as generally thought and that pleiotropy between adaptation and reproductive isolation is an important route of speciation in fungal pathogens.  相似文献   

3.
Flavodoxins are small flavin mononucleotide (FMN)‐containing proteins that mediate a variety of electron transfer processes. The primary sequence of flavodoxin from Fusobacterium nucleatum, a pathogenic oral bacterium, is marked with a number of distinct features including a glycine to lysine (K13) substitution in the highly conserved phosphate‐binding loop (T/S‐X‐T‐G‐X‐T), variation in the aromatic residues that sandwich the FMN cofactor, and a more even distribution of acidic and basic residues. The Eox/sq (oxidized/semiquinone; ?43 mV) and Esq/hq (semiquinone/hydroquinone; ?256 mV) are the highest recorded reduction potentials of known long‐chain flavodoxins. These more electropositive values are a consequence of the apoprotein binding to the FMN hydroquinone anion with ~70‐fold greater affinity compared to the oxidized form of the cofactor. Inspection of the FnFld crystal structure revealed the absence of a hydrogen bond between the protein and the oxidized FMN N5 atom, which likely accounts for the more electropositive Eox/sq. The more electropositive Esq/hq is likely attributed to only one negatively charged group positioned within 12 Å of the FMN N1. We show that natural substitutions of highly conserved residues partially account for these more electropositive reduction potentials.  相似文献   

4.
Helicobacter pylori infects half of the world's population, and strains that encode the cag type IV secretion system for injection of the oncoprotein CagA into host gastric epithelial cells are associated with elevated levels of cancer. CagA translocation into host cells is dependent on interactions between the H. pylori adhesin protein HopQ and human CEACAMs. Here, we present high‐resolution structures of several HopQ‐CEACAM complexes and CEACAMs in their monomeric and dimeric forms establishing that HopQ uses a coupled folding and binding mechanism to engage the canonical CEACAM dimerization interface for CEACAM recognition. By combining mutagenesis with biophysical and functional analyses, we show that the modes of CEACAM recognition by HopQ and CEACAMs themselves are starkly different. Our data describe precise molecular mechanisms by which microbes exploit host CEACAMs for infection and enable future development of novel oncoprotein translocation inhibitors and H. pylori‐specific antimicrobial agents.  相似文献   

5.
Methoxypyrazines are a family of potent volatile compounds of diverse biological significance. They are used by insects and plants in chemical defence, are present in many vegetables and fruit and, in particular, impart herbaceous/green/vegetal sensory attributes to wines of certain varieties, including Cabernet Sauvignon. While pathways for methoxypyrazine biosynthesis have been postulated, none of the steps have been confirmed genetically. We have used the F2 progeny of a cross between a rapid flowering grapevine dwarf mutant, which does not produce 3‐isobutyl‐2‐methoxypyrazine (IBMP), and Cabernet Sauvignon to identify the major locus responsible for accumulation of IBMP in unripe grape berries. Two candidate methyltransferase genes within the locus were identified and one was significantly associated with berry IBMP levels using association mapping. The enzyme encoded by this gene (VvOMT3) has high affinity for hydroxypyrazine precursors of methoxypyrazines. The gene is not expressed in the fruit of Pinot varieties, which lack IBMP, but is expressed in Cabernet Sauvignon at the time of accumulation of IBMP in the fruit. The results suggest that VvOMT3 is responsible for the final step in methoxypyrazine synthesis in grape berries and is the major determinant of IBMP production.  相似文献   

6.
Striga hermonthica is a root parasitic plant that infests cereals, decimating yields, particularly in sub‐Saharan Africa. For germination, Striga seeds require host‐released strigolactones that are perceived by the family of HYPOSENSITIVE to LIGHT (ShHTL) receptors. Inhibiting seed germination would thus be a promising approach for combating Striga. However, there are currently no strigolactone antagonists that specifically block ShHTLs and do not bind to DWARF14, the homologous strigolactone receptor of the host. Here, we show that the octyl phenol ethoxylate Triton X‐100 inhibits S. hermonthica seed germination without affecting host plants. High‐resolution X‐ray structures reveal that Triton X‐100 specifically plugs the catalytic pocket of ShHTL7. ShHTL7‐specific inhibition by Triton X‐100 demonstrates the dominant role of this particular ShHTL receptor for Striga germination. Our structural analysis provides a rationale for the broad specificity and high sensitivity of ShHTL7, and reveals that strigolactones trigger structural changes in ShHTL7 that are required for downstream signaling. Our findings identify Triton and the related 2‐[4‐(2,4,4‐trimethylpentan‐2‐yl)phenoxy]acetic acid as promising lead compounds for the rational design of efficient Striga‐specific herbicides.  相似文献   

7.
The crystalline nature of solid tryptophan has been characterized by X‐ray single crystal and powder diffraction analyses, differential scanning calorimetry, as well as measurement of solid–liquid equilibrium in water/isopropanol solution. Both the thermodynamic and crystallographic investigations have demonstrated unambiguously that solid tryptophan crystallizes in the form of a pseudoracemate (i.e., solid solution) with maximum melting over the entire enantiomeric composition range. Comparative single‐crystal X‐ray studies show that the crystal structures of racemic and enantiomeric tryptophan give very similar solid‐state packing geometries dictated by hydrogen bonding interactions. Our results indicate that the insignificant difference between homochiral and heterochiral interactions accounts for the formation of a pseudoracemate for this system. Chirality 27:88–94, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
Human thrombopoietin (hTPO) primarily stimulates megakaryocytopoiesis and platelet production and is neutralized by the mouse TN1 antibody. The thermodynamic characteristics of TN1 antibody–hTPO complexation were analyzed by isothermal titration calorimetry (ITC) using an antigen‐binding fragment (Fab) derived from the TN1 antibody (TN1‐Fab). To clarify the mechanism by which hTPO is recognized by TN1‐Fab the conformation of free TN1‐Fab was determined to a resolution of 2.0 Å using X‐ray crystallography and compared with the hTPO‐bound form of TN1‐Fab determined by a previous study. This structural comparison revealed that the conformation of TN1‐Fab does not substantially change after hTPO binding and a set of 15 water molecules is released from the antigen‐binding site (paratope) of TN1‐Fab upon hTPO complexation. Interestingly, the heat capacity change (ΔCp) measured by ITC (?1.52 ± 0.05 kJ mol?1 K?1) differed significantly from calculations based upon the X‐ray structure data of the hTPO‐bound and unbound forms of TN1‐Fab (?1.02 ~ 0.25 kJ mol?1 K?1) suggesting that hTPO undergoes an induced‐fit conformational change combined with significant desolvation upon TN1‐Fab binding. The results shed light on the structural biology associated with neutralizing antibody recognition.  相似文献   

11.
12.
The failure of DNA ligases to complete their catalytic reactions generates cytotoxic adenylated DNA strand breaks. The APTX RNA‐DNA deadenylase protects genome integrity and corrects abortive DNA ligation arising during ribonucleotide excision repair and base excision DNA repair, and APTX human mutations cause the neurodegenerative disorder ataxia with oculomotor ataxia 1 (AOA1). How APTX senses cognate DNA nicks and is inactivated in AOA1 remains incompletely defined. Here, we report X‐ray structures of APTX engaging nicked RNA‐DNA substrates that provide direct evidence for a wedge‐pivot‐cut strategy for 5′‐AMP resolution shared with the alternate 5′‐AMP processing enzymes POLβ and FEN1. Our results uncover a DNA‐induced fit mechanism regulating APTX active site loop conformations and assembly of a catalytically competent active center. Further, based on comprehensive biochemical, X‐ray and solution NMR results, we define a complex hierarchy for the differential impacts of the AOA1 mutational spectrum on APTX structure and activity. Sixteen AOA1 variants impact APTX protein stability, one mutation directly alters deadenylation reaction chemistry, and a dominant AOA1 variant unexpectedly allosterically modulates APTX active site conformations.  相似文献   

13.
Togninia minima is the main fungal species associated with grapevine leaf stripe disease worldwide. This species is mainly known from its asexual state in nature; nevertheless, a biallelic heterothallic mating strategy has been confirmed for this species based on in vitro crossing studies. There are no data available on the incidence of an active sexual cycle within the populations of this species in many grapevine‐producing countries as well as Iran. The possibility of a clandestine sexual cycle within the Iranian isolates of T. minima was evaluated by analysing the distribution and frequency of the mating‐type alleles on a microspatial and a macrogeographical scales. Towards this aim, a total of 90 T. minima isolates were recovered from grapevines with esca disease from the vineyards in north and north‐western Iran. A multiplex PCR method previously designed by authors was applied for simultaneous identification and determination of the mating‐type alleles in T. minima populations. The results on the screening of mating‐type alleles using multiplex PCR method revealed the mating‐type identity of 77 isolates as Mat1‐2 and 23 isolates as Mat1‐1. Our results showed that both Mat1‐1 and Mat1‐2 isolates are present in a single vineyard and even on single vines. The distribution of mating‐type alleles in the sampled area skewed from the 1 : 1 ratio (77 : 23); however, co‐occurrence of both mating types in a single vineyard and even on single vines is suggestive for the presence of an active sexual cycle for T. minima in north‐western Iran.  相似文献   

14.
Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro‐organisms to grapevine as a substitute for chemicals. Some micro‐organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro‐organisms in viticulture.

Significance and Impact of the Study

In this review, we evaluate the applicability of micro‐organisms in viticulture. Micro‐organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro‐organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro‐organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro‐organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality.  相似文献   

15.
During spring and summer of 2011, a survey was undertaken on some palm groves in the Kerman province (south‐eastern Iran) to determine the fungal pathogens associated with date palm (Phoenix dactylifera L.) decline diseases. Samples were taken from date palm trees showing yellowing, wilting and dieback symptoms. Isolations were made from symptomatic tissues on malt extract agar (MEA) supplemented with 100 mg/l streptomycin sulphate (MEAS). Two species of Phaeoacremonium, Phaeoacremonium aleophilum and Pm. parasiticum, and two species of Botryosphaeriaceae, Botryosphaeria dothidea andDiplodia mutila, were isolated from affected trees and identified on the basis of morphological, cultural and molecular characteristics. Pathogenicity tests were performed on date palm (4‐year‐old potted plants) under greenhouse conditions. Based on the pathogenicity tests, Pm. aleophilum was the most virulent and caused the longest lesions. This is the first report of Pm. aleophilum and B. dothidea and their pathogenicity on date palm tree.  相似文献   

16.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

17.
18.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

19.
Korndörfer IP  Beste G  Skerra A 《Proteins》2003,53(1):121-129
The artificial lipocalin FluA with novel specificity toward fluorescein was derived via combinatorial engineering from the bilin-binding protein, BBP by exchange of 16 amino acids in the ligand pocket. Here, we describe the crystal structure of FluA at 2.0 A resolution in the space group P2(1) with two protein-ligand complexes in the asymmetric unit. In both molecules, the characteristic beta-barrel architecture with the attached alpha-helix is well preserved. In contrast, the four loops at one end of the beta-barrel that form the entrance to the binding site exhibit large conformational deviations from the wild-type protein, which can be attributed to the sidechain replacements. Specificity for the new ligand is furnished by hydrophobic packing, charged sidechain environment, and hydrogen bonds with its hydroxyl groups. Unexpectedly, fluorescein is bound in a much deeper cavity than biliverdin IX(gamma) in the natural lipocalin. Triggered by the substituted residues, unmutated sidechains at the bottom of the binding site adopt conformations that are quite different from those observed in the BBP, illustrating that not only the loop region but also the hydrophobic interior of the beta-barrel can be reshaped for molecular recognition. Particularly, Trp 129 participates in a tight stacking interaction with the xanthenolone moiety, which may explain the ultrafast electron transfer that occurs on light excitation of the bound fluorescein. These structural findings support our concept of using lipocalins as a scaffold for the engineering of so-called "anticalins" directed against prescribed targets as an alternative to recombinant antibody fragments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号