首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Introduction – Vetiver root oil is known as one of the finest fixatives used in perfumery. This highly complex oil contains more than 200 components, which are mainly sesquiterpene hydrocarbons and their oxygenated derivatives. Since conventional GC‐MS has limitation in terms of separation efficiency, the comprehensive two‐dimensional GC‐MS (GC × GC‐MS) was proposed in this study as an alternative technique for the analysis of vetiver oil constituents. Objective – To evaluate efficiency of the hyphenated GC × GC‐MS technique in terms of separation power and sensitivity prior to identification and quantitation of the volatile constituents in a variety of vetiver root oil samples. Methodology – Dried roots of Vetiveria zizanioides were subjected to extraction using various conditions of four different methods; simultaneous steam distillation, supercritical fluid, microwave‐assisted, and Soxhlet extraction. Volatile components in all vetiver root oil samples were separated and identified by GC‐MS and GC × GC‐MS. The relative contents of volatile constituents in each vetiver oil sample were calculated using the peak volume normalization method. Results – Different techniques of extraction had diverse effects on yield, physical and chemical properties of the vetiver root oils obtained. Overall, 64 volatile constituents were identified by GC‐MS. Among the 245 well‐resolved individual components obtained by GC × GC‐MS, the additional identification of 43 more volatiles was achieved. Conclusion – In comparison with GC‐MS, GC × GC‐MS showed greater ability to differentiate the quality of essential oils obtained from diverse extraction conditions in terms of their volatile compositions and contents. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
F2-Isoprostanes are stable lipid peroxidation products of arachidonic acid, the quantification of which provides an index of oxidative stress in vivo. We describe a method for analysing isoprostaglandin F type III (15-F2t-IsoP) in biological fluids. The method involves solid-phase extraction on octadecyl endcapped and aminopropyl cartridges. After conversion to trimethylsilyl ester trimethylsilyl ether derivatives, isoprostaglandin F type III is analysed by mass spectrometry, operated in electronic impact selected ion monitoring mode. We have compared enzyme immunoassay (EIA; Cayman, Ann Arbor, MI, USA) to this method with 30 human urine aliquots following the same extraction procedure in order to determine the agreement between both methods. Isoprostaglandin F type III concentrations determined with gas chromatography–mass spectrometry (GC–MS) did not agree with those determined with EIA. Our results suggest that GC–MS and EIA do not measure the same compounds. As a consequence, comparison of clinical results using GC–MS and EIA should be avoided.  相似文献   

3.
The use of 13C-labelled compounds to study lipid metabolism is increasing. Typically less than 40% of the orally administered label is recovered in breath CO2. The remainder must be either absorbed and not oxidised or not absorbed and remain in the faeces. Two methods of determining how much tracer passes through the body, and is present in the stool, were compared. Compound specific analysis of tert.-butyldimethylsilyl [13C]hexadecanoic acid by gas chromatography–mass spectrometry (GC–MS) with electron impact ionisation was compared with bulk analysis of whole stool and lipid extract by continuous flow isotope ratio mass spectrometry (CF–IRMS) with a combustion interface. The mean difference between the IRMS and GC–MS methods was −0.02 mmol 13C d−1 with a mean excretion of 14.2 mmol 13C d−1. Combustion IRMS is both simpler and cheaper, when the objective is to determine how much administered dose appears in stool, and information about the form of the label is not required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号