首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ren G  An K  Liao Y  Zhou X  Cao Y  Zhao H  Ge X  Kuai B 《Plant physiology》2007,144(3):1429-1441
A dramatic increase of chlorophyll (Chl) degradation occurs during senescence of vegetative plant organs and fruit ripening. Although the biochemical pathway of Chl degradation has long been proposed, little is known about its regulatory mechanism. Identification of Chl degradation-disturbed mutants and subsequently isolation of responsible genes would greatly facilitate the elucidation of the regulation of Chl degradation. Here, we describe a nonyellowing mutant of Arabidopsis (Arabidopsis thaliana), nye1-1, in which 50% Chl was retained, compared to less than 10% in the wild type (Columbia-0), at the end of a 6-d dark incubation. Nevertheless, neither photosynthesis- nor senescence-associated process was significantly affected in nye1-1. Characteristically, a significant reduction in pheophorbide a oxygenase activity was detected in nye1-1. However, no detectable accumulation of either chlorophyllide a or pheophorbide a was observed. Reciprocal crossings revealed that the mutant phenotype was caused by a monogenic semidominant nuclear mutation. We have identified AtNYE1 by positional cloning. Dozens of its putative orthologs, predominantly appearing in higher plant species, were identified, some of which have been associated with Chl degradation in a few crop species. Quantitative polymerase chain reaction analysis showed that AtNYE1 was drastically induced by senescence signals. Constitutive overexpression of AtNYE1 could result in either pale-yellow true leaves or even albino seedlings. These results collectively indicate that NYE1 plays an important regulatory role in Chl degradation during senescence by modulating pheophorbide a oxygenase activity.  相似文献   

3.
Recent identification of NYE1/SGR1 brought up a new era for the exploration of the regulatory mechanism of Chlorophyll (Chl) degradation.Cluster analysis of senescence associated genes with putative chloroplast targeting sequences revealed several genes sharing a similar expression pattern with NYE1.Further characterization of available T-DNA insertion lines led to the discovery of a novel stay-green gene CRN1 ((C)o-(r)egulated with (N)YE1).Chl breakdown was significantly restrained in crn1-1 under diversified senescence scenarios,which is comparable with that in acd1-20,but much more severe than that in nye1-1.Notably,various Chl binding proteins,especially trimeric LHCP Ⅱ,were markedly retained in crn1-1 four days after dark-treatment,possibly due to a lesion in disassociation of protein-pigment complex.Nevertheless,the photochemical efficiency of PSII in crn1-1 declined,even more rapidly,two days after dark-treatment,compared to those in Col-0 and nye1-1.Our results suggest that CRN1 plays a crucial role in Chl degradation,and that loss of its function produces various side-effects,including those on the breakdown of Ch-protein complex and the maintenance of the residual photosynthetic capability during leaf senescence.  相似文献   

4.
Leaf senescence constituted the final stage of leaf development and it is always accompanied by the leaf yellowing. The non-yellowing gene (NYE1), initially identified from Arabidopsis in our laboratory, is a key regulatory gene responsible for chlorophyll degradation during senescence. In this study, an orthologue of AtNYE1 was isolated from the bamboo (Bambusa emeiensis cv. Viridiflavus) and tentatively named BeNYE1. The full length sequence of 1 386 bp contains an open reading frame of 801 bp. The protein encoded by BeNYE1 consists of 266 amino acids. Sequence analysis revealed that BeNYE1 had high similarity with other NYE/SGR proteins from various monocotyledon species. BeNYE1 was strongly induced by natural senescence and dark-induced senescence in bamboo. Driven by a 1.5 kb upstream fragment of AtNYE1, BeNYE1 could rescue the stay-green phenotype of nye1-1. The constitutive over-expression of BeNYE1 could accelerate the chlorophyll degradation. These results indicated that BeNYE1 might play an important role in the regulation of chlorophyll degradation during leaf senescence in bamboo.  相似文献   

5.
The ultrastructural, physiological, and molecular changes in developing and mature seeds were monitored in a control line (Glycine max [L.] Merr., cv Clark) that exhibited seed degreening and two mutant lines (d1d2 and cyt-G1) that retained chlorophyll upon seed maturation. Ultrastructural studies showed that the control line had no internal membranes, whereas stacked thylakoid membranes were detected in the green seed from the mutant lines. Pigment analyses indicated that total chlorophyll was lowest in the mature seeds of the control line. Mature d1d2 and cyt-G1 seed had elevated Chl a and Chl b levels, respectively. In both control and mutant lines, Lhcb1, Lhcb2, and RbcS mRNAs were abundant in embryos prior to cotyledon filling, declined after the onset of storage protein accumulation, and were barely detectable or undetectable in all later stages of seed development. Therefore, the chlorophyll-retention phenotype must be a result of the alteration of a process that occurs after translation of photosynthesis-related mRNAs to stabilize apoprotein and pigment levels. Furthermore, different elements controlling either the synthesis or turnover of Chl a and Chl b must be impaired in the d1d2 and cyt-G1 lines. No reproducible differences in total leaf, embryonic, and chloroplast protein profiles and plastid DNAs could be correlated with the mutations that induced chlorophyll retention.  相似文献   

6.
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll – protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4‐1, a stay‐green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4‐1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation‐related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity‐dependent manner. Surprisingly, the Fv/Fm value remained high in nyc4‐1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4‐1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild‐type and other non‐functional stay‐green mutants, including sgr‐2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll – protein complexes during leaf senescence is discussed.  相似文献   

7.
8.
叶绿体的正常发育对于植物至关重要,突变体研究是探明叶绿体发育过程中基因功能的有效途径。叶色突变体已引起人们广泛的关注,通过对各种植物材料的研究,叶色突变的分子机制已取得一定进展,但远未被阐明,尤其在水稻当中。目前,已报道的水稻叶色突变体,主要表现为黄化、白化、亮绿、条斑条纹、温敏变色、转绿和转紫等。该研究使用甲基磺酸乙酯( EMS)处理粳稻日本晴,获得一份遗传稳定的突变体ygl-63,其整个生育期叶片均表现为黄绿色。通过测定ygl-63和野生型苗期叶片的叶绿素含量发现,ygl-63中叶绿素a、叶绿素b和总叶绿素含量与野生型相比分别下降了31.9%、42.2%和34.1%,同时叶绿素a/b值较野生型增加。这表明叶绿素含量的降低是导致ygl-63黄绿叶突变性状的主要原因,并且叶绿素b的降幅大于叶绿素a。在成熟后调查主要农艺性状发现ygl-63单株有效穗数和结实率分别减少8.9%和8.5%;千粒重增加10.4%;而株高,穗长和每穗着粒数和野生型相比差异并不显著。通过测量微量元素发现,ygl-63种子中的铁和锌含量较野生型显著降低,分别减少85.7%和64.8%。将ygl-63与正常绿色品种明恢63杂交获得F1和F2群体,进行遗传分析发现,ygl-63突变性状受1对隐性基因控制,通过基因定位,将该基因定位到水稻第11染色体长臂的分子标记InDel-3和InDel-5之间约2.4 cM范围内。该基因被认为是一个新的水稻叶色突变基因,暂命名为ygl-63( g)。所得结果为今后对ygl-63( g)基因的进一步研究奠定了基础。  相似文献   

9.
10.
11.
Premature leaf senescence in rice is one of the most common factors affecting the plant's development and yield. Although methyltransferases are involved in diverse biological functions, their roles in rice leaf senescence have not been previously reported. In this study, we identified the premature leaf senescence 3 (pls3) mutant in rice, which led to early leaf senescence and early heading date. Further investigations revealed that premature leaf senescence was triggered by the accumulation of reactive oxygen species. Using physiological analysis, we found that chlorophyll content was reduced in the pls3 mutant leaves, while hydrogen peroxide (H2O2) and malondialdehyde levels were elevated. Consistent with these findings, the pls3 mutant exhibited hypersensitivity to exogenous hydrogen peroxide. The expression of other senescence‐associated genes such as Osh36 and RCCR1 was increased in the pls3 mutant. Positional cloning indicated the pls3 phenotype was the result of a mutation in OsMTS1, which encodes an O‐methyltransferase in the melatonin biosynthetic pathway. Functional complementation of OsMTS1 in pls3 completely restored the wild‐type phenotype. We found leaf melatonin content to be dramatically reduced in pls3, and that exogenous application of melatonin recovered the pls3 mutant's leaf senescence phenotype to levels comparable to that of wild‐type rice. Moreover, overexpression of OsMTS1 in the wild‐type plant increased the grain yield by 15.9%. Our results demonstrate that disruption of OsMTS1, which codes for a methyltransferase, can trigger leaf senescence as a result of decreased melatonin production.  相似文献   

12.
13.
Angiosperm resurrection plants exhibit poikilo‐ or homoiochlorophylly as a response to water deficit. Both strategies are generally considered as effective mechanisms to reduce oxidative stress associated with photosynthetic activity under water deficiency. The mechanism of water deficit‐induced chlorophyll (Chl) degradation in resurrection plants is unknown but has previously been suggested to occur as a result of non‐enzymatic photooxidation. We investigated Chl degradation during dehydration in both poikilochlorophyllous (Xerophyta viscosa) and homoiochlorophyllous (Craterostigma pumilum) species. We demonstrate an increase in the abundance of PHEOPHORBIDE a OXYGENASE (PAO), a key enzyme of Chl breakdown, together with an accumulation of phyllobilins, that is, products of PAO‐dependent Chl breakdown, in both species. Phyllobilins and PAO levels diminished again in leaves from rehydrated plants. We conclude that water deficit‐induced poikilochlorophylly occurs via the well‐characterized PAO/phyllobilin pathway of Chl breakdown and that this mechanism also appears conserved in a resurrection species displaying homoiochlorophylly. The roles of the PAO/phyllobilin pathway during different plant developmental processes that involve Chl breakdown, such as leaf senescence and desiccation, fruit ripening and seed maturation, are discussed.  相似文献   

14.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

15.
16.
17.
18.
19.
An early senescence (es) mutant of rice Oryza sativa L. with progressing death of most of leaves before heading stage was identified in the field in Hainan province. After tillering stage, the brown striations were found in the base of green leaves randomly, and then expanded to whole leaves. No fungi, bacteria, and viruses were detected in the brown striations suggesting that it was a genetic mutant. The ultrastructure of leaf cells at the site of brown striations showed breakdown of chloroplast thylakoid membrane structures and other organelles, and condensation of the cytoplasm at severe senescence stage. The photosynthetic activity and chlorophyll (Chl) contents decreased irreversibly along with leaf senescence process.  相似文献   

20.
Jasmonic acid (JA) functions in plant development, including senescence and immunity. Arabidopsis thaliana CORONATINE INSENSITIVE 1 encodes a JA receptor and functions in the JA‐responsive signaling pathway. The Arabidopsis genome harbors a single COI gene, but the rice (Oryza sativa) genome harbors three COI homologs, OsCOI1a, OsCOI1b, and OsCOI2. Thus, it remains unclear whether each OsCOI has distinct, additive, synergistic, or redundant functions in development. Here, we use the oscoi1b‐1 knockout mutants to show that OsCOI1b mainly affects leaf senescence under senescence‐promoting conditions. oscoi1b‐1 mutants stayed green during dark‐induced and natural senescence, with substantial retention of chlorophylls and photosynthetic capacity. Furthermore, several senescence‐associated genes were downregulated in oscoi1b‐1 mutants, including homologs of Arabidopsis thaliana ETHYLENE INSENSITIVE 3 and ORESARA 1, important regulators of leaf senescence. These results suggest that crosstalk between JA signaling and ethylene signaling affects leaf senescence. The Arabidopsis coi1‐1 plants containing 35S:OsCOI1a or 35S:OsCOI1b rescued the delayed leaf senescence during dark incubation, suggesting that both OsCOI1a and OsCOI1b are required for promoting leaf senescence in rice. oscoi1b‐1 mutants showed significant decreases in spikelet fertility and grain weight, leading to severe reduction of grain yield, indicating that OsCOI1‐mediated JA signaling affects spikelet fertility and grain filling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号