首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Although certain saponins in soybean seeds have been reported to have health benefits, group A acetyl saponins cause undesirable bitter and astringent tastes in soy products. Therefore, reduction or elimination of group A saponins is an important target for soybean breeders. A wide survey of cultivated and wild soybean germplasm identified a mutant line that lacked group A saponins. The absence of soyasapogenol A, a group A saponin aglycone, is controlled by a single recessive allele, sg-5 that mapped genetically near the SSR marker, Satt117, on soybean chromosome 15 (linkage group E). The locus is epistatic to Sg-1, which controls the terminal sugar variation on the C-22 sugar chain of soyasapogenol A, and allelic differences at this locus lead to changes in the amount of DDMP saponins and their derivatives group B and E products. These findings provide a new insight into the biosynthetic pathway of soybean saponins, and identify a genetic approach that can be applied to improve the quality of foods produced from soybean.  相似文献   

2.
Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.  相似文献   

3.
Staphylococcus aureus elaborates two citrate‐containing siderophores, staphyloferrin A (SA) and staphyloferrin B (SB), that enhance growth under iron‐restriction, yet, paradoxically, expression of the TCA cycle citrate synthase, CitZ, is downregulated during iron starvation. Iron starvation does, however, result in expression of SbnG, recently identified as a novel citrate synthase that is encoded from within the iron‐regulated SB biosynthetic locus, suggesting an important role for SbnG in staphyloferrin production. We demonstrate that during growth of S. aureus in iron‐restricted media containing glucose, SB is produced but, in contrast, SA production is severely repressed; accordingly, SB‐deficient mutants grow poorly in these media. Hypothesizing that reduced TCA cycle activity hinders SA production, we show that a citZ mutant is capable of SB synthesis, but not SA synthesis, providing evidence that SbnG does not generate citrate for incorporation into SA. A citZ sbnG mutant synthesizes neither staphyloferrin, is severely compromised for growth in iron‐restricted media, and is significantly more impaired for virulence than either of the single‐deletion mutants. We propose that SB is the more important of the two siderophores for S. aureus insofar as it is synthesized, and supports iron‐restricted growth, without need of TCA cycle activity.  相似文献   

4.
Legume plants regulate the number of nitrogen‐fixing root nodules they form via a process called the Autoregulation of Nodulation (AON). Despite being one of the most economically important and abundantly consumed legumes, little is known about the AON pathway of common bean (Phaseolus vulgaris). We used comparative‐ and functional‐genomic approaches to identify central components in the AON pathway of common bean. This includes identifying PvNARK, which encodes a LRR receptor kinase that acts to regulate root nodule numbers. A novel, truncated version of the gene was identified directly upstream of PvNARK, similar to Medicago truncatula, but not seen in Lotus japonicus or soybean. Two mutant alleles of PvNARK were identified that cause a classic shoot‐controlled and nitrate‐tolerant supernodulation phenotype. Homeologous over‐expression of the nodulation‐suppressive CLE peptide‐encoding soybean gene, GmRIC1, abolished nodulation in wild‐type bean, but had no discernible effect on PvNARK‐mutant plants. This demonstrates that soybean GmRIC1 can function interspecifically in bean, acting in a PvNARK‐dependent manner. Identification of bean PvRIC1, PvRIC2 and PvNIC1, orthologues of the soybean nodulation‐suppressive CLE peptides, revealed a high degree of conservation, particularly in the CLE domain. Overall, our work identified four new components of bean nodulation control and a truncated copy of PvNARK, discovered the mutation responsible for two supernodulating bean mutants and demonstrated that soybean GmRIC1 can function in the AON pathway of bean.  相似文献   

5.
Triterpene saponins are a diverse group of compounds with a structure consisting of a triterpene aglycone and sugars. Identification of the sugar-transferase involved in triterpene saponin biosynthesis is difficult due to the structural complexity of triterpene saponin. Two glycosyltransferases from Glycine max, designated as GmSGT2 and GmSGT3, were identified and characterized. In vitro analysis revealed that GmSGT2 transfers a galactosyl group from UDP-galactose to soyasapogenol B monoglucuronide, and that GmSGT3 transfers a rhamnosyl group from UDP-rhamnose to soyasaponin III. These results suggest that soyasaponin I is biosynthesized from soyasapogenol B by successive sugar transfer reactions.  相似文献   

6.
Eight wild soybean accessions with different saponin phenotypes were used to examine saponin composition and relative saponin quantity in various tissues of mature seeds and two-week-old seedlings by LC–PDA/MS/MS. Saponin composition and content were varied according to tissues and accessions. The average total saponin concentration in 1?g mature dry seeds of wild soybean was 16.08?±?3.13?μmol. In two-week-old seedlings, produced from 1?g mature seeds, it was 27.94?±?6.52?μmol. Group A saponins were highly concentrated in seed hypocotyl (4.04?±?0.71?μmol). High concentration of DDMP saponins (7.37?±?5.22?μmol) and Sg-6 saponins (2.19?±?0.59?μmol) was found in cotyledonary leaf. In seedlings, the amounts of group A and Sg-6 saponins reduced 2.3- and 1.3-folds, respectively, while DDMP?+?B?+?E saponins increased 2.5-fold than those of mature seeds. Our findings show that the group A and Sg-6 saponins in mature seeds were degraded and/or translocated by germination whereas DDMP saponins were newly synthesized.  相似文献   

7.
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed.  相似文献   

8.
The composition and the structures of native “group B saponin” in soybean seeds were reinvestigated. Five kinds of saponins named soyasaponins αg, βg, βa, γg, and γa, according to elution order from HPLC, were isolated and the structures were characterized as 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP) attaching through an acetal linkage to the C-22 hydroxyl of the aglycones of soyasaponins V, I, II, III, and IV, respectively, by UV, IR, MS, and NMR. DDMP-conjugated saponins were detected as major saponin constituents by extraction under mild conditions, and soyasaponins I–V were not detected. Therefore it was strongly suggested that these DDMP-conjugated saponins were genuine saponins in the intact soybeans.  相似文献   

9.
10.
Recent studies identified three begomoviruses infecting soybean and bean crops in northwestern (NW) Argentina, bean golden mosaic virus (BGMV), a virus with high capsid protein identity with Sida mottle virus (SiMoV) and a possible new viral species (isolate A). Analysis of complete DNA‐A sequences confirmed that isolate A represents a new viral species for which the authors propose the name soybean blistering mosaic virus (SbBMV), whereas the SiMoV‐like virus is actually an isolate of tomato yellow spot virus (ToYSV). Molecular hybridisation‐based detection of the three begomoviruses was accomplished using a general probe obtained by mixing full‐length DNA‐A clones of the three begomoviruses and specific probes comprising part of the common region of each viral genome. These probes were used to test samples collected in NW Argentina from 2004 through 2007. Fifty‐three percent of the bean samples were infected with BGMV, 11.5% with ToYSV and 9% with SbBMV. For soybean samples, 33% were infected with SbBMV and 18% with ToYSV. BGMV was not detected in soybean. ToYSV was also detected in the wild species Abutilon theophrasti.  相似文献   

11.
The expression pattern of pathogenesis‐related genes PR‐1, PR‐2 and PR‐5, considered as markers for salicylic acid (SA)‐dependent systemic acquired resistance (SAR), was examined in the roots and shoots of tomato plants pre‐treated with SA and subsequently infected with root‐knot nematodes (RKNs) (Meloidogyne incognita). PR‐1 was up‐regulated in both roots and shoots of SA‐treated plants, whereas the expression of PR‐5 was enhanced only in roots. The over‐expression of PR‐1 in the whole plant occurred as soon as 1 day after SA treatment. Up‐regulation of the PR‐1 gene was considered to be the main marker of SAR elicitation. One day after treatment, plants were inoculated with active juveniles (J2s) of M. incognita. The number of J2s that entered the roots and started to develop was significantly lower in SA‐treated than in untreated plants at 5 and 15 days after inoculation. The expression pattern of PR‐1, PR‐2 and PR‐5 was also examined in the roots and shoots of susceptible and Mi‐1‐carrying resistant tomato plants infected by RKNs. Nematode infection produced a down‐regulation of PR genes in both roots and shoots of SA‐treated and untreated plants, and in roots of Mi‐carrying resistant plants. Moreover, in resistant infected plants, PR gene expression, in particular PR‐1 gene expression, was highly induced in shoots. Thus, nematode infection was demonstrated to elicit SAR in shoots of resistant plants. The data presented in this study show that the repression of host defence SA signalling is associated with the successful development of RKNs, and that SA exogenously added as a soil drench is able to trigger a SAR‐like response to RKNs in tomato.  相似文献   

12.
13.
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.  相似文献   

14.
15.
The output of genetic mutant screenings in soya bean [Glycine max (L.) Merr.] has been limited by its paleopolypoid genome. CRISPR‐Cas9 can generate multiplex mutants in crops with complex genomes. Nevertheless, the transformation efficiency of soya bean remains low and, hence, remains the major obstacle in the application of CRISPR‐Cas9 as a mutant screening tool. Here, we report a pooled CRISPR‐Cas9 platform to generate soya bean multiplex mutagenesis populations. We optimized the key steps in the screening protocol, including vector construction, sgRNA assessment, pooled transformation, sgRNA identification and gene editing verification. We constructed 70 CRISPR‐Cas9 vectors to target 102 candidate genes and their paralogs which were subjected to pooled transformation in 16 batches. A population consisting of 407 T0 lines was obtained containing all sgRNAs at an average mutagenesis frequency of 59.2%, including 35.6% lines carrying multiplex mutations. The mutation frequency in the T1 progeny could be increased further despite obtaining a transgenic chimera. In this population, we characterized gmric1/gmric2 double mutants with increased nodule numbers and gmrdn1‐1/1‐2/1‐3 triple mutant lines with decreased nodulation. Our study provides an advanced strategy for the generation of a targeted multiplex mutant population to overcome the gene redundancy problem in soya bean as well as in other major crops.  相似文献   

16.
Mutagenized populations have provided important materials for introducing variation and identifying gene function in plants. In this study, an ethyl methanesulfonate (EMS)‐induced soybean (Glycine max) population, consisting of 21,600 independent M2 lines, was developed. Over 1,000 M4 (5) families, with diverse abnormal phenotypes for seed composition, seed shape, plant morphology and maturity that are stably expressed across different environments and generations were identified. Phenotypic analysis of the population led to the identification of a yellow pigmentation mutant, gyl, that displayed significantly decreased chlorophyll (Chl) content and abnormal chloroplast development. Sequence analysis showed that gyl is allelic to MinnGold, where a different single nucleotide polymorphism variation in the Mg‐chelatase subunit gene (ChlI1a) results in golden yellow leaves. A cleaved amplified polymorphic sequence marker was developed and may be applied to marker‐assisted selection for the golden yellow phenotype in soybean breeding. We show that the newly developed soybean EMS mutant population has potential for functional genomics research and genetic improvement in soybean.  相似文献   

17.
18.
A total of 434 isolates of Rhizoctonia belonging to 10 anastomosis groups were obtained from the roots and rhizosphere soils of bean and soybean plants grown in Samsun, Turkey. AG-4 was found to be the most common group on bean and soybean plants and AG-5, AG-6, binucleate AG-A, AG-B and R. zeae were other groups isolated from the both plant species. AG-1, AG-7 and AG-K from bean and AG-E from soybean were other groups obtained in the study. The pathogenicity tests on bean and soybean seedlings showed that the highest disease severities were caused by AG-4 isolates, whereas AG-1 and AG-6 isolates were moderately pathogenic. Binucleate Rhizoctonia AG-B isolates were also moderately pathogenic, while other binucleate Rhizoctonia were found to be weakly pathogenic. Rhizoctonia zeae isolates caused moderate disease symptoms on bean, but soybean plants were slightly affected by this group of isolates. This is the first reported observation of R. solani AG-6 and AG-7 and binucleate Rhizoctonia AG-B on bean, and R. solani AG-5 and AG-6 and binucleate Rhizoctonia AG-A, AG-B and AG-E on soybean, in Turkey.  相似文献   

19.
Introduction – The lack of pharmacopoeial methodologies for the quality control of plants used for therapeutic purposes is a huge problem that impacts directly upon public health. In the case of saponins, their great structural complexity, weak glycoside bonds and high polarity hinder their identification by conventional techniques. Objective – To apply high‐performance liquid chromatography–electrospray tandem mass spectrometry (HPLC‐ESI/MSn) to identify the O‐glycoside sequence of saponins from the roots of Phytolacca bogotensis. Methodology – Saponins were isolated by preparative HPLC and characterised by NMR spectroscopic experiments. Collision‐induced dissociation (CID) of isolated saponins was performed producing typical degradation reactions that can be associated with several glycosidic bonds as empirical criteria. A method using solid‐phase extraction (SPE) and HPLC/ESI‐MSn for the characterisation of saponins and identification of novel molecules is described. Results – Three saponins reported for the first time in P. bogotensis were isolated and characterised by NMR spectroscopy. Characteristic cross ring cleavage reactions have been used as empirical criteria for the characterisation of the glycosidic bonds most frequently reported for Phytolacca saponins. One new saponin was proposed on the basis of empirical criteria, and other five saponins were identified for the first time for P. bogotensis using HPLC‐ESI/MSn. Conclusion – Electrospray ionisation in combination with tandem mass spectrometry has been established as a powerful tool for the profiling of saponins from roots of P. bogotensis. CID proved to be a useful tool for the characterisation and identification of known and novel saponins from the plant family Phytolaccaceae and can be used for quality control purposes of crude plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
To obtain host iron, Staphylococcus aureus secretes siderophores staphyloferrin A (SA) or staphyloferrin B (SB), and accesses heme iron through use of iron‐regulated surface determinant proteins. While iron transport in S. aureus is well documented, there is scant information about proteins required to access iron from complexes in the cytoplasm. In vitro studies identified a pyridine nucleotide‐disulfide oxidoreductase, named IruO, as an electron donor for the heme monooxygenases IsdG and IsdI, promoting heme degradation. Here, we show that an iruO mutant was not debilitated for growth on heme, suggesting involvement of another reductase. NtrA is an iron‐regulated nitroreductase and, as with the iruO mutant, a ntrA mutant grew on heme comparable with wild type (WT). In contrast, a iruO ntrA double mutant was severely debilitated for growth on heme, a phenotype that was complemented by expression of either iruO or ntrA in trans, demonstrating their overlapping role in heme‐iron utilization. Contrasting the involvement of multiple reductases for heme iron utilization, ntrA was shown essential for iron utilization using SA, although not SB or other siderophores tested, and an iruO mutant was incapable of deferoxamine‐mediated growth. Accordingly, virulence of WT S. aureus, but not an iruO mutant, was enhanced in mice receiving deferoxamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号