首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative trait loci (QTLs) for the main steps of nitrogen (N) metabolism in the developing ear of maize (Zea mays L.) and their co-localization with QTLs for kernel yield and putative candidate genes were searched in order to identify chromosomal regions putatively involved in the determination of yield. During the grain-filling period, the changes in physiological traits were monitored in the cob and in the developing kernels, representative of carbon and N metabolism in the developing ear. The correlations between these physiological traits and traits related to yield were examined and localized with the corresponding QTLs on a genetic map. Glycine and serine metabolism in developing kernels and the cognate genes appeared to be of major importance for kernel production. The importance of kernel glutamine synthesis in the determination of yield was also confirmed. The genetic and physiological bases of N metabolism in the developing ear can be studied in an integrated manner by means of a quantitative genetic approach using molecular markers and genomics, and combining agronomic, physiological and correlation studies. Such an approach leads to the identification of possible new regulatory metabolic and developmental networks specific to the ear that may be of major importance for maize productivity.  相似文献   

2.
Kernel size and morphology are two important yield‐determining traits in maize, but their molecular and genetic mechanisms are poorly characterized. Here, we identified a major QTL, qKM4.08, which explains approximately 24.20% of the kernel morphology variance in a recombinant population derived from two elite maize inbred lines, Huangzaosi (HZS, round kernel) and LV28 (slender kernel). Positional cloning and transgenic analysis revealed that qKM4.08 encodes ZmVPS29, a retromer complex component. Compared with the ZmVPS29 HZS allele, the ZmVPS29 LV28 allele showed higher expression in developing kernels. Overexpression of ZmVPS29 conferred a slender kernel morphology and increased the yield per plant in different maize genetic backgrounds. Sequence analysis revealed that ZmVPS29 has been under purifying selection during maize domestication. Association analyses identified two significant kernel morphology‐associated polymorphic sites in the ZmVPS29 promoter region that were significantly enriched in modern maize breeding lines. Further study showed that ZmVPS29 increased auxin accumulation during early kernel development by enhancing auxin biosynthesis and transport and reducing auxin degradation and thereby improved kernel development. Our results suggest that ZmVPS29 regulates kernel morphology, most likely through an auxin‐dependent process(es).  相似文献   

3.
Kernel size is an important component of grain yield in maize breeding programs. To extend the understanding on the genetic basis of kernel size traits (i.e., kernel length, kernel width and kernel thickness), we developed a set of four-way cross mapping population derived from four maize inbred lines with varied kernel sizes. In the present study, we investigated the genetic basis of natural variation in seed size and other components of maize yield (e.g., hundred kernel weight, number of rows per ear, number of kernels per row). In total, ten QTL affecting kernel size were identified, three of which (two for kernel length and one for kernel width) had stable expression in other components of maize yield. The possible genetic mechanism behind the trade-off of kernel size and yield components was discussed.  相似文献   

4.
Spatial and temporal patterns of insect damage in relation to aflatoxin contamination in a corn field with plants of uniform genetic background are not well understood. After previous examination of spatial patterns of insect damage and aflatoxin in pre‐harvest corn fields, we further examined both spatial and temporal patterns of cob‐ and kernel‐feeding insect damage, and aflatoxin level with two samplings at pre‐harvest in 2008 and 2009. The feeding damage by each of the ear/kernel‐feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs) and maize weevil population were assessed at each grid point with five ears. Sampling data showed a field edge effect in both insect damage and aflatoxin contamination in both years. Maize weevils tended toward an aggregated distribution more frequently than either corn earworm or stink bug damage in both years. The frequency of detecting aggregated distribution for aflatoxin level was less than any of the insect damage assessments. Stink bug damage and maize weevil number were more closely associated with aflatoxin level than was corn earworm damage. In addition, the indices of spatial–temporal association (χ) demonstrated that the number of maize weevils was associated between the first (4 weeks pre‐harvest) and second (1 week pre‐harvest) samplings in both years on all fields. In contrast, corn earworm damage between the first and second samplings from the field on the Belflower Farm, and aflatoxin level and corn earworm damage from the field on the Lang Farm were dissociated in 2009.  相似文献   

5.
A study was undertaken to determine the ramification of maize shank, cob and kernel tissues by Stenocarpella maydis. Trials consisting of inoculated and uninoculated treatments were planted at two localities. Shank, cob and kernels of each treatment were divided into segments and S. maydis colonization was determined. Infection of the pedicel portion of maize kernels was significantly higher than the apical portion. Preferential colonization of the embryo's of kernels was observed. Colonization of cobs occurred primarily at the attachment end of the cob, with sclerenchymatous tissues showing the greatest re-isolation frequency. Shank segments did not show significant differences in S. maydis re-isolation frequency, although a tendency for higher re-isolations was observed at the stalk-attachment end. It is concluded that S. maydis colonization occurs at the base of the ear with mycelial ramification toward the tip of the ear. The sclerenchyma and placentae were the primary colonized cob tissues. as were the embryos in the kernels.  相似文献   

6.
High-throughput phenotyping systems are powerful, dramatically changing our ability to document, measure, and detect biological phenomena. Here, we describe a cost-effective combination of a custom-built imaging platform and deep-learning-based computer vision pipeline. A minimal version of the maize (Zea mays) ear scanner was built with low-cost and readily available parts. The scanner rotates a maize ear while a digital camera captures a video of the surface of the ear, which is then digitally flattened into a two-dimensional projection. Segregating GFP and anthocyanin kernel phenotypes are clearly distinguishable in ear projections and can be manually annotated and analyzed using image analysis software. Increased throughput was attained by designing and implementing an automated kernel counting system using transfer learning and a deep learning object detection model. The computer vision model was able to rapidly assess over 390 000 kernels, identifying male-specific transmission defects across a wide range of GFP-marked mutant alleles. This includes a previously undescribed defect putatively associated with mutation of Zm00001d002824, a gene predicted to encode a vacuolar processing enzyme. Thus, by using this system, the quantification of transmission data and other ear and kernel phenotypes can be accelerated and scaled to generate large datasets for robust analyses.  相似文献   

7.

Maize ear fasciation

Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces.

Material and Methods

Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed.

Results and Discussion

Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection.

Conclusions

Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.  相似文献   

8.
C Liao  Y Peng  W Ma  R Liu  C Li  X Li 《Journal of experimental botany》2012,63(14):5275-5288
Optimal nitrogen (N) supply is critical for achieving high grain yield of maize. It is well established that N deficiency significantly reduces grain yield and N oversupply reduces N use efficiency without significant yield increase. However, the underlying proteomic mechanism remains poorly understood. The present field study showed that N deficiency significantly reduced ear size and dry matter accumulation in the cob and grain, directly resulting in a significant decrease in grain yield. The N content, biomass accumulation, and proteomic variations were further analysed in young ears at the silking stage under different N regimes. N deficiency significantly reduced N content and biomass accumulation in young ears of maize plants. Proteomic analysis identified 47 proteins with significant differential accumulation in young ears under different N treatments. Eighteen proteins also responded to other abiotic and biotic stresses, suggesting that N nutritional imbalance triggered a general stress response. Importantly, 24 proteins are involved in regulation of hormonal metabolism and functions, ear development, and C/N metabolism in young ears, indicating profound impacts of N nutrition on ear growth and grain yield at the proteomic level.  相似文献   

9.
Mixed cultivation of crops often results in increased production per unit land area, but the underlying mechanisms are poorly understood. Plants in intercrops grow differently from plants in single crops; however, no study has shown the association between plant plastic responses and the yield advantage. Here, we assessed the productivity of wheat–maize intercropping as compared to sole wheat and sole maize, and the associated differences in wheat shoot and leaf traits. In two field experiments, intercrop wheat and maize were both grown in alternating strips consisting of six rows of wheat and two rows of maize. The traits of wheat plants in border rows of the strips were compared to the traits of plants in the inner rows as well as those in sole wheat. Leaf development, chlorophyll concentration and azimuth, as well as the final leaf and ear sizes, tiller dynamics of wheat and yield components of both crops were determined. The relative densities of wheat and maize in the intercrop were 0.33 and 0.67, respectively, but the corresponding relative yields compared to the respective monocultures were 0.46 for wheat and 0.77 for maize. Compared to wheat plants in the inner rows of the intercrop strips as well as in the monoculture, border‐row wheat plants in the intercrop strips had (a) more tillers owing to increased tiller production and survival, and thus more ears, (b) larger top leaves on the main stem and tillers, (c) higher chlorophyll concentration in leaves, (d) greater number of kernels per ear and (e) smaller thousand‐grain weight. Grain yield per metre row length of border‐row wheat was 141% higher than the sole wheat, and was 176% higher than the inner‐row wheat. The results demonstrate the importance of plasticity in architectural traits for yield advantage in multispecies cropping systems.  相似文献   

10.
Drought accounts for significant yield losses in crops. Maize (Zea mays L.) is particularly sensitive to water stress at reproductive stages, and breeding to improve drought tolerance has been a challenge. By use of a linkage map with 121 single sequence repeat (SSR) markers, quantitative trait loci (QTLs) for grain yield and yield components were characterized in the population of the cross X178×B73 under water-stressed and well-watered conditions. Under the well-watered regime, 2, 4, 4, 1, 2, 2, and 3 QTLs were identified for grain yield, 100-kernel weight, kernel number per ear, cob weight per ear, kernel weight per ear, ear weight, and ear number per plant, respectively, whereas under the water-stressed conditions, 1, 5, 2, 6, 1, 3, and 2 QTLs, respectively, were found. The significant phenotypic correlations among yield and yield components to some extent were observed under both water conditions, and some overlaps between the corresponding QTLs were also found. QTLs for grain yield and kernel weight per ear under well-watered conditions and ear weight under both well-watered and water-stressed conditions over-lapped, and all were located on chromosome 1.03 near marker bnlg176. Two other noticeable QTL regions were on chromosome 9.05 and 9.07 near markers umc1657 and bnlg1525; the first corresponded to grain yield, kernel weight per ear, and ear weight under well-watered conditions and kernel number per ear under both water conditions, and the second to grain yield and cob weight per ear under water-stressed conditions and ear number per plant under both water conditions. A comparative analysis of the QTLs herein identified with those described in previous studies for yield and yield components in different maize populations revealed a number of QTLs in common. These QTLs have potential use in molecular marker-assisted selection.  相似文献   

11.
Identification of quantitative trait loci for nitrogen use efficiency in maize   总被引:18,自引:0,他引:18  
Intensively managed crop systems are normally dependent on nitrogen input to maximize yield potential. Improvements in nitrogen- use efficiency (NUE) in crop plants may support the development of cropping systems that are more economically efficient and environment friendly. The objective of this study was to map and characterize quantitative trait loci (QTL) for NUE in a maize population. In preliminary experiments, inbred lines contrasting for NUE were identified and were used to generate populations of F2:3 families for genetic study. A total of 214 F2:3 families were evaluated in replicated trials under high nitrogen (280 kg/ha) and low nitrogen (30 kg/ha) conditions in 1996 and 1997. Analysis of ear-leaf area, plant height, grain yield, ears per plant, kernels number per ear, and kernel weight indicated significant genetic variation among F2:3 families. The heritability of these traits was found to be high (h2=0.57–0.81). The mapping population were genotyped using a set of 99 restriction fragment length polymorphism (RFLP) markers. A linkage map of these markers was developed and used to identify QTL. Between two and six loci were found to be associated with each trait. The correspondence of several genomic regions with traits measured under nitrogen limited conditions suggests the presence of QTL associated with NUE. QTLs will help breeders to improve their maize ideotype of a low-nitrogen efficiency by identifying those constitutive and adaptive traits involved in the expression of traits significantly correlated with yield, such as ear leaf area and number of ears per plant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
13.
The maize landraces in the North East Himalayan (NEH) region in India, especially in the Sikkim state, are morphologically highly diverse. The present study provides details of phenotypic and molecular characterization of a set of 48 selected maize landrace accessions, including the ‘Sikkim Primitives’ which have a unique habit of prolificacy (5–9 ears on a single stalk). Multi-location phenotypic evaluation of these 48 accessions revealed significant genetic variability for grain yield and its components, leading to identification of several promising accessions. Cluster analysis and PCA using nine morpho-agronomic characters clearly separated ‘Sikkim Primitives’ from the rest of the accessions. PCA revealed two principal components describing 90% of the total variation, with hundred kernel weight, ear length, ear diameter, number of kernels per ear and flowering behaviour forming the most discriminatory traits. The accessions were genotyped using 42 microsatellite or simple sequence repeat (SSR) markers using a ‘population bulk DNA fingerprinting strategy’, with allele resolution using an automated DNA Sequencer. The study revealed a high mean number of alleles per SSR locus (13.0) and high Polymorphism Information Content (PIC) value of 0.60. The analysis also led to identification of 163 private/unique alleles, differentiating 44 out of 48 accessions. Six highly frequent SSR alleles were detected at different loci (phi014, phi062, phi090, umc1266, umc1367 and umc2250) with individual frequencies ≥0.75. Some of these SSR loci were reported to tag specific genes/QTL for some important traits, indicating that chromosomal regions harboring these SSR alleles were not selectively neutral. Cluster analysis using Rogers’ genetic distance also revealed distinct genetic identity of the ‘Sikkim Primitives’ from the rest of the accessions in India, including Sikkim. Mantel’s test revealed significant and positive correlation between the phenotypic and molecular genetic dissimilarity matrices. The study was the first to portray the patterns of phenotypic and molecular diversity in the maize landraces from the NEH region in India.  相似文献   

14.
Mohammadi M  Anoop V  Gleddie S  Harris LJ 《Proteomics》2011,11(18):3675-3684
Fusarium graminearum is the causal agent of gibberella ear rot in maize ears, resulting in yield losses due to mouldy and mycotoxin‐contaminated grain. This study represents a global proteomic approach to document the early infection by F. graminearum of two maize inbreds, B73 and CO441, which differ in disease susceptibility. Mock‐ and F. graminearum‐treated developing kernels were sampled 48 h post‐inoculation over three field seasons. Infected B73 kernels consistently contained higher concentrations of the mycotoxin deoxynivalenol than the kernels of the more tolerant inbred CO441. A total of 2067 maize proteins were identified in the iTRAQ analysis of extracted kernel proteins at a 99% confidence level. A subset of 878 proteins was identified in at least two biological replicates and exhibited statistically significantly altered expression between treatments and/or the two inbred lines of which 96 proteins exhibited changes in abundance >1.5‐fold in at least one of the treatments. Many proteins associated with the defense response were more abundant after infection, including PR‐10 (PR, pathogenesis‐related), chitinases, xylanase inhibitors, proteinase inhibitors, and a class III peroxidase. Kernels of the tolerant inbred CO441 contained higher levels of these defense‐related proteins than B73 kernels even after mock treatment, suggesting that these proteins may provide a basal defense against Fusarium infection in CO441.  相似文献   

15.
雌穗是玉米重要的生殖器官,雌穗发育决定成熟果穗大小及单穗粒重,进而直接影响玉米产量。雌穗性状主要包括穗长、穗粗、穗行数、行粒数、穗重、单穗粒重等,均为多基因控制的数量遗传性状,且其遗传结构各不相同。解析雌穗性状的遗传基础,优化雌穗结构,是玉米增产的重要途径。前人通过数量性状位点(quantitative trait locus mapping,QTL)定位和全基因组关联分析(genome-wide association study, GWAS)等方法,已经鉴定出较多雌穗性状相关的遗传位点,但是目前已鉴定功能的基因较少,所建立的遗传位点一致性图谱并不完整,因此难以全面揭示雌穗性状遗传结构。通过综合前人雌穗性状遗传定位进展,现将已鉴定QTL位点和显著关联SNP整合至玉米B73参考基因组V4版本,并鉴定出雌穗性状定位热点区间,对深入解析雌穗性状遗传结构、指导雌穗性状基因克隆和理解雌穗发育分子机制均具有重要意义。  相似文献   

16.
以6个对玉米粗缩病(MRDV)表现不同抗性的玉米品种为材料,研究了粗缩病对玉米产量性状和籽粒品质的影响。结果表明,在供试品种中,‘青农105’和‘青农8’为抗病品种,‘登海3622’和‘农大108’为中抗品种,‘先玉335’和‘郑单958’为感病品种。感病后,玉米果穗穗长、行粒数、穗粒重和产量显著降低,且损失程度表现为抗病品种〈中抗品种〈感病品种:籽粒中粗淀粉含量显著降低,粗蛋白含量升高,粗脂肪含量变化不明显。回归分析表明,通过旃情指数可以准确预测玉米粗缩病导致的产量损失。  相似文献   

17.
2010—2011年以耐荫性较弱的玉米杂交种豫玉22和耐荫性较强的玉米杂交种郑单958为材料,在抽雄前3 d开始进行弱光胁迫处理,吐丝后10 d恢复自然光照,研究弱光胁迫及光恢复对不同耐荫型玉米果穗生长发育及其内源激素含量的影响。结果表明:弱光胁迫下,玉米果穗生长发育明显减缓,穗长、穗粗和果穗干物质积累显著减小,秃尖度变大;穗行数、穗粒数和籽粒库容显著降低;吐丝期果穗顶部小穗子房发育停滞,已有败育迹象的籽粒在恢复自然光照后无明显改善;豫玉22果穗和籽粒性状在处理间的差异程度均大于郑单958。弱光胁迫下,两玉米杂交种果穗的ABA和ZR含量均升高,而GA含量和GA/ABA比值均降低;IAA含量和IAA/ABA比值在郑单958果穗中表现为升高,而豫玉22则表现为下降。  相似文献   

18.
Ear-colonizing insects and diseases that reduce yield and impose health threats by mycotoxin contaminations in the grain, are critical impediments for corn (Zea mays L.) production in the southern United States. Ten germplasm lines from the Germplasm Enhancement of Maize (GEM) Program in Ames, IA, and Raleigh, NC, and 10 lines (derived from GEM germplasm) from the Texas Agricultural Experiment Station in Lubbock, TX, were examined in 2007 and 2008 with local resistant and susceptible controls. Four types of insect damage and smut disease (Ustilago maydis) infection, as well as gene X environment (G X E) interaction, was assessed on corn ears under field conditions. Insect damage on corn ears was further separated as cob and kernel damage. Cob penetration rating was used to assess corn earworm [Helicoverpa zea (Boddie)] and fall armyworm [Spodoptera frugiperda (J.E. Smith)] feeding on corn cobs, whereas kernel damage was assessed using three parameters: 1) percentage of kernels discolored by stink bugs (i.e., brown stink bug [Euschistus serous (Say)], southern green stink bug [Nezara viridula (L.)], and green stink bug [Chinavia (Acrosternum) hilare (Say)]; 2) percentage of maize weevil (Sitophilus zeamais Motschulsky)-damaged kernels; and 3) percentage of kernels damaged by sap beetle (Carpophilus spp.), "chocolate milkworm" (Moodna spp.), and pink scavenger caterpillar [Pyroderces (Anatrachyntis) rileyi (Walsingham)]. The smut infection rates on ears, tassels, and nodes also were assessed. Ear protection traits (i.e., husk tightness and extension) in relation to insect damage and smut infection also were examined. Significant differences in insect damage, smut infection, and husk protection traits were detected among the germplasm lines. Three of the 20 germplasm lines were identified as being multiple insect and smut resistant. Of the three lines, entries 5 and 7 were derived from DKXL370, which was developed using corn germplasm from Brazil, whereas entry 14 was derived from CUBA117.  相似文献   

19.
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down‐regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1‐A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1‐A‐HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1‐A expression levels between genotypes, with TaDA1‐A‐HapI resulting in lower TaDA1‐A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1‐A physically interacts with TaGW2‐B. The additive effects of TaDA1‐A and TaGW2‐B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down‐regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi‐environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild‐type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.  相似文献   

20.
Citreoviridin contents were measured in eight bulk samples of maize kernels collected from eight fields immediately following harvest in southern Georgia. Citreoviridin contamination in six of the bulk samples ranged from 19 to 2,790 micrograms/kg. In hand-picked samples the toxin was concentrated in a few kernels (pick-outs), the contents of which were stained a bright lemon yellow (range, 53,800 to 759,900 micrograms/kg). The citreoviridin-producing fungus Eupenicillium ochrosalmoneum Scott & Stolk was isolated from each of these pick-out kernels. Citreoviridin was not detected in bulk samples from two of the fields. Aflatoxins were also present in all of the bulk samples (total aflatoxin B1 and B2; range, 7 to 360 micrograms/kg), including those not containing citreoviridin. In Biotron-grown maize ears that were inoculated with E. ochrosalmoneum through a wound made with a toothpick, citreoviridin was concentrated primarily in the wounded and fungus-rotted kernels (range, 142,000 to 2,780,000 micrograms/kg). Samples of uninjured kernels immediately adjacent to the wounded kernel (first circle) had less than 4,000 micrograms of citreoviridin per kg, while the mean concentration of toxin in kernel samples representing the next row removed (second circle) and all remaining kernels from the ear was less than 45 micrograms/kg. Animal toxicosis has not been linked to citreoviridin-contaminated maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号