首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
C4 photosynthesis occurs in the most productive crops and vegetation on the planet, and has become widespread because it allows increased rates of photosynthesis compared with the ancestral C3 pathway. Leaves of C4 plants typically possess complicated alterations to photosynthesis, such that its reactions are compartmented between mesophyll and bundle sheath cells. Despite its complexity, the C4 pathway has arisen independently in 62 separate lineages of land plants, and so represents one of the most striking examples of convergent evolution known. We demonstrate that elements in untranslated regions (UTRs) of multiple genes important for C4 photosynthesis contribute to the metabolic compartmentalization characteristic of a C4 leaf. Either the 5′ or the 3′ UTR is sufficient for cell specificity, indicating that functional redundancy underlies this key aspect of C4 gene expression. Furthermore, we show that orthologous PPDK and CA genes from the C3 plant Arabidopsis thaliana are primed for recruitment into the C4 pathway. Elements sufficient for M‐cell specificity in C4 leaves are also present in both the 5′ and 3′ UTRs of these C3A. thaliana genes. These data indicate functional latency within the UTRs of genes from C3 species that have been recruited into the C4 pathway. The repeated recruitment of pre‐existing cis‐elements in C3 genes may have facilitated the evolution of C4 photosynthesis. These data also highlight the importance of alterations in trans in producing a functional C4 leaf, and so provide insight into both the evolution and molecular basis of this important type of photosynthesis.  相似文献   

5.
  • C4 and crassulacean acid metabolism (CAM) have evolved in the order Caryophyllales many times but neither C4 nor CAM have been recorded for the Basellaceae, a small family in the CAM‐rich sub‐order Portulacineae.
  • 24 h gas exchange and day–night changes in titratable acidity were measured in leaves of Anredera baselloides exposed to wet–dry–wet cycles.
  • While net CO2 uptake was restricted to the light period in well‐watered plants, net CO2 fixation in the dark, accompanied by significant nocturnal increases in leaf acidity, developed in droughted plants. Plants reverted to solely C3 photosynthesis upon rewatering.
  • The reversible induction of nocturnal net CO2 uptake by drought stress indicates that this species is able to exhibit CAM in a facultative manner. This is the first report of CAM in a member of the Basellaceae.
  相似文献   

6.
7.
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that offers the potential to engineer improved water‐use efficiency (WUE) and drought resilience in C3 plants while sustaining productivity in the hotter and drier climates that are predicted for much of the world. CAM species show an inverted pattern of stomatal opening and closing across the diel cycle, which conserves water and provides a means of maintaining growth in hot, water‐limited environments. Recent genome sequencing of the constitutive model CAM species Kalanchoë fedtschenkoi provides a platform for elucidating the ensemble of proteins that link photosynthetic metabolism with stomatal movement, and that protect CAM plants from harsh environmental conditions. We describe a large‐scale proteomics analysis to characterize and compare proteins, as well as diel changes in their abundance in guard cell‐enriched epidermis and mesophyll cells from leaves of K. fedtschenkoi. Proteins implicated in processes that encompass respiration, the transport of water and CO2, stomatal regulation, and CAM biochemistry are highlighted and discussed. Diel rescheduling of guard cell starch turnover in K. fedtschenkoi compared with that observed in Arabidopsis is reported and tissue‐specific localization in the epidermis and mesophyll of isozymes implicated in starch and malate turnover are discussed in line with the contrasting roles for these metabolites within the CAM mesophyll and stomatal complex. These data reveal the proteins and the biological processes enriched in each layer and provide key information for studies aiming to adapt plants to hot and dry environments by modifying leaf physiology for improved plant sustainability.  相似文献   

8.
Control of C4 photosynthesis and Crassulacean acid metabolism (CAM) is, in part, mediated by the diel regulation of phosphoenolpyruvate carboxylase (PEPC) activity. The nature of this regulation of PEPC in the leaf cell cytoplasm of C4 and CAM plants is both metabolite-related and posttranslational. Specificially, the regulatory properties of the enzyme vary in accord with the physiological activity of C4 photosynthesis and CAM: PEPC is less sensitive to feedback inhibition by l-malate under light (C4 plants) or at night (CAM plants) than in darkness (C4) or during the day (CAM). While the view that a light-induced change in the aggregation state of the holoenzyme is a general mechanism for the diel regulation of PEPC activity in CAM plants is currently in dispute, there is no supportive in vivo evidence for such a tetramer/dimer interconversion in C4 plants. In contrast, a wealth of in vitro and in vivo data has accumulated in support of the view that the reversible phosphorylation of a specific, N-terminal regulatory serine residue in PEPC (e.g. Ser-15 or Ser-8 in the maize or sorghum enzymes, respectively) plays a key, if not cardinal, role in the posttranslational regulation of the carboxylase by light/dark or day/night transitions in both C4 and CAM plants, respectively.  相似文献   

9.
10.
11.
Crassulacean acid metabolism (CAM) evolved in arid environments as a water-saving alternative to C3 photosynthesis. There is great interest in engineering more drought-resistant crops by introducing CAM into C3 plants. However, it is unknown whether full CAM or alternative water-saving modes would be more productive in the environments typically experienced by C3 crops. To study the effect of temperature and relative humidity on plant metabolism in the context of water saving, we coupled a time-resolved diel (based on a 24-h day-night cycle) model of leaf metabolism to an environment-dependent gas-exchange model. This combined model allowed us to study the emergence of CAM as a trade-off between leaf productivity and water saving. We show that vacuolar storage capacity in the leaf is a major determinant of the extent of CAM. Moreover, our model identified an alternative CAM cycle involving mitochondrial isocitrate dehydrogenase as a potential contributor to initial carbon fixation at night. Simulations across a range of environmental conditions show that the water-saving potential of CAM strongly depends on the daytime weather conditions and that the additional water-saving effect of carbon fixation by isocitrate dehydrogenase can reach 11% total water saving for the conditions tested.  相似文献   

12.
13.
14.
Leaf responses to elevated atmospheric CO2 concentration (Ca) are central to models of forest CO2 exchange with the atmosphere and constrain the magnitude of the future carbon sink. Estimating the magnitude of primary productivity enhancement of forests in elevated Ca requires an understanding of how photosynthesis is regulated by diffusional and biochemical components and up‐scaled to entire canopies. To test the sensitivity of leaf photosynthesis and stomatal conductance to elevated Ca in time and space, we compiled a comprehensive dataset measured over 10 years for a temperate pine forest of Pinus taeda, but also including deciduous species, primarily Liquidambar styraciflua. We combined over one thousand controlled‐response curves of photosynthesis as a function of environmental drivers (light, air Ca and temperature) measured at canopy heights up to 20 m over 11 years (1996–2006) to generate parameterizations for leaf‐scale models for the Duke free‐air CO2 enrichment (FACE) experiment. The enhancement of leaf net photosynthesis (Anet) in P. taeda by elevated Ca of +200 μmol mol?1 was 67% for current‐year needles in the upper crown in summer conditions over 10 years. Photosynthetic enhancement of P. taeda at the leaf‐scale increased by two‐fold from the driest to wettest growing seasons. Current‐year pine foliage Anet was sensitive to temporal variation, whereas previous‐year foliage Anet was less responsive and overall showed less enhancement (+30%). Photosynthetic downregulation in overwintering upper canopy pine needles was small at average leaf N (Narea), but statistically significant. In contrast, co‐dominant and subcanopy L. styraciflua trees showed Anet enhancement of 62% and no AnetNarea adjustments. Various understory deciduous tree species showed an average Anet enhancement of 42%. Differences in photosynthetic responses between overwintering pine needles and subcanopy deciduous leaves suggest that increased Ca has the potential to enhance the mixed‐species composition of planted pine stands and, by extension, naturally regenerating pine‐dominated stands.  相似文献   

15.
Summary Ananas comosus (L.) Merr. var. Smooth Cayenne plants when grown in vitro under different temperature regimes developed as CAM or as C3 plants. The plants used in this study were developed from the lateral buds of the nodal etiolated stem explants cultured on Murashige and Skoog medium for 3 mo. The cultures were maintained under a 16-h photoperiod for different thermoperiods. With 28°C light/15°C dark thermoperiod, as compared with constant 28°C light and dark, pineapple plants had a succulence index two times greater, and also a greater nocturnal titratable acidity and phosphoenolpyruvate carboxylase (PEPCase) activity, indicating CAM-type photosynthesis. The highest abscisic acid (ABA) level occurred during the light period, 8 h prior to maximum PEPCase activity, while the indole-3-acetic acid (IAA) peak was found during the dark period, coinciding with the time of highest PEPCase activity. These plants were also smaller with thicker leaves and fewer roots, but had greater dry weight. Their leaves showed histological characteristics of CAM plants, such as the presence of greater quantities of chlorenchyma and hypoderm. In addition, their vascular system was more conspicuous. In contrast, under constant temperature (28°C light/dark) plants showed little succulence in the leaves. There was no significant acid oscillation and diurnal variation in PEPCase activity in these plants, suggesting the occurrence of C3 photosynthesis. Also, no diurnal variation in ABA and IAA contents was observed. The results of this study clearly indicate a role for temperature in determining the type of carbon fixation pathway in in vitro grown pineapple. Evidence that ABA and IAA participate in CAM signaling is provided.  相似文献   

16.
The specification of vascular patterning in plants has interested plant biologists for many years. In the last decade a new context has emerged for this interest. Specifically, recent proposals to engineer C4 traits into C3 plants such as rice require an understanding of how the distinctive venation pattern in the leaves of C4 plants is determined. High vein density with Kranz anatomy, whereby photosynthetic cells are arranged in encircling layers around vascular bundles, is one of the major traits that differentiate C4 species from C3 species. To identify genetic factors that specify C4 leaf anatomy, we generated ethyl methanesulfonate‐ and γ‐ray‐mutagenized populations of the C4 species sorghum (Sorghum bicolor), and screened for lines with reduced vein density. Two mutations were identified that conferred low vein density. Both mutations segregated in backcrossed F2 populations as homozygous recessive alleles. Bulk segregant analysis using next‐generation sequencing revealed that, in both cases, the mutant phenotype was associated with mutations in the CYP90D2 gene, which encodes an enzyme in the brassinosteroid biosynthesis pathway. Lack of complementation in allelism tests confirmed this result. These data indicate that the brassinosteroid pathway promotes high vein density in the sorghum leaf, and suggest that differences between C4 and C3 leaf anatomy may arise in part through differential activity of this pathway in the two leaf types.  相似文献   

17.
18.
Plant seed oil‐based liquid transportation fuels (i.e., biodiesel and green diesel) have tremendous potential as environmentally, economically and technologically feasible alternatives to petroleum‐derived fuels. Due to their nutritional and industrial importance, one of the major objectives is to increase the seed yield and oil production of oilseed crops via biotechnological approaches. Camelina sativa, an emerging oilseed crop, has been proposed as an ideal crop for biodiesel and bioproduct applications. Further increase in seed oil yield by increasing the flux of carbon from increased photosynthesis into triacylglycerol (TAG) synthesis will make this crop more profitable. To increase the oil yield, we engineered Camelina by co‐expressing the Arabidopsis thaliana (L.) Heynh. diacylglycerol acyltransferase1 (DGAT1) and a yeast cytosolic glycerol‐3‐phosphate dehydrogenase (GPD1) genes under the control of seed‐specific promoters. Plants co‐expressing DGAT1 and GPD1 exhibited up to 13% higher seed oil content and up to 52% increase in seed mass compared to wild‐type plants. Further, DGAT1‐ and GDP1‐co‐expressing lines showed significantly higher seed and oil yields on a dry weight basis than the wild‐type controls or plants expressing DGAT1 and GPD1 alone. The oil harvest index (g oil per g total dry matter) for DGTA1‐ and GPD1‐co‐expressing lines was almost twofold higher as compared to wild type and the lines expressing DGAT1 and GPD1 alone. Therefore, combining the overexpression of TAG biosynthetic genes, DGAT1 and GPD1, appears to be a positive strategy to achieve a synergistic effect on the flux through the TAG synthesis pathway, and thereby further increase the oil yield.  相似文献   

19.
20.
The aim of this study was to investigate whether the root system of Mesembryanthemum crystallinum (L.) plays a role in triggering the induction of crassulacean acid metabolism (CAM) during water stress. Depriving well-irrigated plants of water, by allowing the soil surrounding the roots to dry, caused increased daily losses in leaf relative water content (RVVC) and mesophyll cell turgor pressure. The RWC of the roots also declined. Subsequently plants exhibited physiological characteristics of CAM photosynthesis (i.e. diurnal fluctuations in leaf titratable acidity and nocturnal net CO2 fixation). When the root system of plants was divided equally between two soil compartments and one half deprived of water, plants exhibited physiological characteristics of CAM without prior changes in leaf RWC content or mesophyll cell turgor pressure. Only the RWC of the water-stressed portion of the roots was reduced. These data suggest that in water-stressed plants daily changes in leaf water relations greater than those observed in well-irrigated plants, are not essential to trigger CAM expression. It is probable that a reduction in soil water availability can be perceived by the roots of M. crystallinum and that this information is conveyed to the leaves triggering the transition from C3 to CAM photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号