共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mutation nrpb1‐A325V in the largest subunit of RNA polymerase II suppresses compromised growth of Arabidopsis plants deficient in a function of the general transcription factor IIF 下载免费PDF全文
Elena Babiychuk Khai Trinh Hoang Klaas Vandepoele Eveline Van De Slijke Danny Geelen Geert De Jaeger Junichi Obokata Sergei Kushnir 《The Plant journal : for cell and molecular biology》2017,89(4):730-745
3.
The Arabidopsis leucine‐rich repeat receptor‐like kinase MUSTACHES enforces stomatal bilateral symmetry in Arabidopsis 下载免费PDF全文
Sandra Keerthisinghe Jeannette A. Nadeau Jessica R. Lucas Tsuyoshi Nakagawa Fred D. Sack 《The Plant journal : for cell and molecular biology》2015,81(5):684-694
Stomata display a mirror‐like symmetry that is adaptive for shoot/atmosphere gas exchange. This symmetry includes the facing guard cells around a lens‐shaped and bilaterally symmetric pore, as well as radially arranged microtubule arrays that primarily originate at the pore and then grow outwards. Mutations in MUSTACHES (MUS), which encodes a leucine‐rich repeat receptor‐like kinase, disrupt this symmetry, resulting in defects ranging from skewed pores and abnormally focused and depolarized radial microtubule arrays, to paired guard cells that face away from each other, or a severe loss of stomatal shape. Translational MUSproMUS:tripleGFP fusions are expressed in cell plates in most cells types in roots and shoots, and cytokinesis and cell plates are mostly normal in mus mutants. However, in guard mother cells, which divide and then form stomata, MUS expression is notably absent from new cell plates, and instead is peripherally located. These results are consistent with a role for MUS in enforcing wall building and cytoskeletal polarity at the centre of the developing stoma via signalling from the vicinity of the guard cell membrane. 相似文献
4.
Praveen K. Kathare Xiaosa Xu Andrew Nguyen Enamul Huq 《The Plant journal : for cell and molecular biology》2020,104(1):113-123
Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness. Recently, we revealed that basic helix‐loop‐helix factors, HECATEs (HECs), function as positive regulators of photomorphogenesis by directly interacting and antagonizing the activity of another group of repressors called PHYTOCHROME‐INTERACTING FACTORs (PIFs). It was also shown that HECs are partially degraded in the dark through the ubiquitin/26S proteasome pathway. However, the underlying mechanism of HEC degradation in the dark is still unclear. Here, we show that HECs also interact with both COP1 and SPA proteins in darkness, and that HEC2 is directly targeted by COP1 for degradation via the ubiquitin/26S proteasome pathway. Moreover, COP1‐mediated polyubiquitylation and degradation of HEC2 are enhanced by PIF1. Therefore, the ubiquitylation and subsequent degradation of HECs are significantly reduced in both cop1 and pif mutants. Consistent with this, the hec mutants partially suppress photomorphogenic phenotypes of both cop1 and pifQ mutants. Collectively, our work reveals that the COP1/SPA‐mediated ubiquitylation and degradation of HECs contributes to the coordination of skoto/photomorphogenic development in plants. 相似文献
5.
Overexpression of the triose phosphate translocator (TPT) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehyde‐3‐phosphate dehydrogenase mutants 下载免费PDF全文
María Flores‐Tornero Armand D. Anoman Sara Rosa‐Téllez Walid Toujani Andreas P.M. Weber Marion Eisenhut Samantha Kurz Saleh Alseekh Alisdair R. Fernie Jesús Muñoz‐Bertomeu Roc Ros 《The Plant journal : for cell and molecular biology》2017,89(6):1146-1158
The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3‐phosphoglycerate (3‐PGA) can equilibrate in non‐photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde‐3‐phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3‐PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3‐PGA deficiency in the plastids of gapcp1gapcp2, and that 3‐PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells. 相似文献
6.
Keiko Yonekura‐Sakakibara Ryo Nakabayashi Satoko Sugawara Takayuki Tohge Takuya Ito Misuzu Koyanagi Mariko Kitajima Hiromitsu Takayama Kazuki Saito 《The Plant journal : for cell and molecular biology》2014,79(5):769-782
Flavonol 3‐O‐diglucosides with a 1→2 inter‐glycosidic linkage are representative pollen‐specific flavonols that are widely distributed in plants, but their biosynthetic genes and physiological roles are not well understood. Flavonoid analysis of four Arabidopsis floral organs (pistils, stamens, petals and calyxes) and flowers of wild‐type and male sterility 1 (ms1) mutants, which are defective in normal development of pollen and tapetum, showed that kaempferol/quercetin 3‐O‐β‐d ‐glucopyranosyl‐(1→2)‐β‐d ‐glucopyranosides accumulated in Arabidopsis pollen. Microarray data using wild‐type and ms1 mutants, gene expression patterns in various organs, and phylogenetic analysis of UDP‐glycosyltransferases (UGTs) suggest that UGT79B6 (At5g54010) is a key modification enzyme for determining pollen‐specific flavonol structure. Kaempferol and quercetin 3‐O‐glucosyl‐(1→2)‐glucosides were absent from two independent ugt79b6 knockout mutants. Transgenic ugt79b6 mutant lines transformed with the genomic UGT79B6 gene had the same flavonoid profile as wild‐type plants. Recombinant UGT79B6 protein converted kaempferol 3‐O‐glucoside to kaempferol 3‐O‐glucosyl‐(1→2)‐glucoside. UGT79B6 recognized 3‐O‐glucosylated/galactosylated anthocyanins/flavonols but not 3,5‐ or 3,7‐diglycosylated flavonoids, and prefers UDP‐glucose, indicating that UGT79B6 encodes flavonoid 3‐O‐glucoside:2″‐O‐glucosyltransferase. A UGT79B6‐GUS fusion showed that UGT79B6 was localized in tapetum cells and microspores of developing anthers. 相似文献
7.
Inhibition of Arabidopsis growth by the allelopathic compound azetidine‐2‐carboxylate is due to the low amino acid specificity of cytosolic prolyl‐tRNA synthetase 下载免费PDF全文
Jiyeon Lee Naveen Joshi Rita Pasini Renwick C. J. Dobson Jane Allison Thomas Leustek 《The Plant journal : for cell and molecular biology》2016,88(2):236-246
The toxicity of azetidine‐2‐carboxylic acid (A2C), a structural analogue of L‐proline, results from its incorporation into proteins due to misrecognition by prolyl‐tRNA synthetase (ProRS). The growth of Arabidopsis thaliana seedling roots is more sensitive to inhibition by A2C than is cotyledon growth. Arabidopsis contains two ProRS isozymes. AtProRS‐Org (At5g52520) is localized in chloroplasts/mitochondria, and AtProRS‐Cyt (At3g62120) is cytosolic. AtProRS‐Cyt mRNA is more highly expressed in roots than in cotyledons. Arabidopsis ProRS isoforms were expressed as His‐tagged recombinant proteins in Escherichia coli. Both enzymes were functionally active in ATP‐PPi exchange and aminoacylation assays, and showed similar Km for L‐proline. A major difference was observed in the substrate specificity of the two enzymes. AtProRS‐Cyt showed nearly identical substrate specificity for L‐proline and A2C, but for AtProRS‐Org the specificity constant was 77.6 times higher for L‐proline than A2C, suggesting that A2C‐sensitivity may result from lower amino acid specificity of AtProRS‐Cyt. Molecular modelling and simulation results indicate that this specificity difference between the AtProRS isoforms may result from altered modes of substrate binding. Similar kinetic results were obtained with the ProRSs from Zea mays, suggesting that the difference in substrate specificity is a conserved feature of ProRS isoforms from plants that do not accumulate A2C and are sensitive to A2C toxicity. The discovery of the mode of action of A2C toxicity could lead to development of biorational weed management strategies. 相似文献
8.
9.
Disparate peroxisome‐related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization 下载免费PDF全文
Kim L. Gonzalez Wendell A. Fleming Yun‐Ting Kao Zachary J. Wright Savina V. Venkova Meredith J. Ventura Bonnie Bartel 《The Plant journal : for cell and molecular biology》2017,92(1):110-128
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail‐anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β‐oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome‐associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex. 相似文献
10.
The outer membrane Omp85‐like protein P39 influences metabolic homeostasis in mature Arabidopsis thaliana 下载免费PDF全文
Y.‐C. Hsueh K. Nicolaisen L. E. Gross J. Nöthen N. Schauer L. Vojta F. Ertel I. Koch R. Ladig H. Fulgosi A. R. Fernie E. Schleiff 《Plant biology (Stuttgart, Germany)》2018,20(5):825-833
- The Omp85 proteins form a large membrane protein family in bacteria and eukaryotes. Omp85 proteins are composed of a C‐terminal β‐barrel‐shaped membrane domain and one or more N‐terminal polypeptide transport‐associated (POTRA) domains. However, Arabidopsis thaliana contains two genes coding for Omp85 proteins without a POTRA domain. One gene is designated P39, according to the molecular weight of the encoded protein. The protein is targeted to plastids and it was established that p39 has electrophysiological properties similar to other Omp85 family members, particularly to that designated as Toc75V/Oep80.
- We analysed expression of the gene and characterised two T‐DNA insertion mutants, focusing on alterations in photosynthetic activity, plastid ultrastructure, global expression profile and metabolome.
- We observed pronounced expression of P39, especially in veins. Mutants of P39 show growth aberrations, reduced photosynthetic activity and changes in plastid ultrastructure, particularly in the leaf tip. Further, they display global alteration of gene expression and metabolite content in leaves of mature plants.
- We conclude that the function of the plastid‐localised and vein‐specific Omp85 family protein p39 is important, but not essential, for maintenance of metabolic homeostasis of full‐grown A. thaliana plants. Further, the function of p39 in veins influences the functionality of other plant tissues. The link connecting p39 function with metabolic regulation in mature A. thaliana is discussed.
11.
The diversion of 2‐C‐methyl‐d‐erythritol‐2,4‐cyclodiphosphate from the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana 下载免费PDF全文
Christian Paetz Nawaporn Onkokesung Jonathan Gershenzon Manuel Rodríguez‐Concepción Michael A. Phillips 《The Plant journal : for cell and molecular biology》2015,82(1):122-137
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress. 相似文献
12.
Comparative proteomic profiling of the choline transporter‐like1 (CHER1) mutant provides insights into plasmodesmata composition of fully developed Arabidopsis thaliana leaves 下载免费PDF全文
Max E. Kraner Carmen Müller Uwe Sonnewald 《The Plant journal : for cell and molecular biology》2017,92(4):696-709
In plants, intercellular communication and exchange are highly dependent on cell wall bridging structures between adhering cells, so‐called plasmodesmata (PD). In our previous genetic screen for PD‐deficient Arabidopsis mutants, we described choline transporter‐like 1 (CHER1) being important for PD genesis and maturation. Leaves of cher1 mutant plants have up to 10 times less PD, which do not develop to complex structures. Here we utilize the T‐DNA insertion mutant cher1–4 and report a deep comparative proteomic workflow for the identification of cell‐wall‐embedded PD‐associated proteins. Analyzing triplicates of cell‐wall‐enriched fractions in depth by fractionation and quantitative high‐resolution mass spectrometry, we compared > 5000 proteins obtained from fully developed leaves. Comparative data analysis and subsequent filtering generated a list of 61 proteins being significantly more abundant in Col‐0. This list was enriched for previously described PD‐associated proteins. To validate PD association of so far uncharacterized proteins, subcellular localization analyses were carried out by confocal laser‐scanning microscopy. This study confirmed the association of PD for three out of four selected candidates, indicating that the comparative approach indeed allowed identification of so far undescribed PD‐associated proteins. Performing comparative cell wall proteomics of Nicotiana benthamiana tissue, we observed an increase in abundance of these three selected candidates during sink to source transition. Taken together, our comparative proteomic approach revealed a valuable data set of potential PD‐associated proteins, which can be used as a resource to unravel the molecular composition of complex PD and to investigate their function in cell‐to‐cell communication. 相似文献
13.
14.
15.
Ronghui Pan John Satkovich Cheng Chen Jianping Hu 《The Plant journal : for cell and molecular biology》2018,94(5):836-846
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system. 相似文献
16.
The glucosinolate breakdown product indole‐3‐carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana 下载免费PDF全文
Ella Katz Sophia Nisani Brijesh S. Yadav Melkamu G. Woldemariam Ben Shai Uri Obolski Marcelo Ehrlich Eilon Shani Georg Jander Daniel A. Chamovitz 《The Plant journal : for cell and molecular biology》2015,82(4):547-555
The glucosinolate breakdown product indole‐3‐carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole‐3‐carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole‐3‐carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole‐3‐carbinol rapidly and reversibly inhibits root elongation in a dose‐dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole‐3‐carbinol and the auxin perception machinery was suggested, as application of indole‐3‐carbinol rescues auxin‐induced root phenotypes. In vitro and yeast‐based protein interaction studies showed that indole‐3‐carbinol perturbs the auxin‐dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3‐indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole‐3‐carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole‐3‐carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development. 相似文献
17.
A nuclear‐encoded chloroplast‐targeted S1 RNA‐binding domain protein affects chloroplast rRNA processing and is crucial for the normal growth of Arabidopsis thaliana 下载免费PDF全文
Ji Hoon Han Kwanuk Lee Kwang Ho Lee Sunyo Jung Young Jeon Hyun‐Sook Pai Hunseung Kang 《The Plant journal : for cell and molecular biology》2015,83(2):277-289
18.
Ronghui Pan Navneet Kaur Jianping Hu 《The Plant journal : for cell and molecular biology》2014,78(6):1047-1059
Mitochondria are essential organelles with dynamic morphology and function. Post‐translational modifications (PTMs), which include protein ubiquitination, are critically involved in animal and yeast mitochondrial dynamics. How PTMs contribute to plant mitochondrial dynamics is just beginning to be elucidated, and mitochondrial enzymes involved in ubiquitination have not been reported from plants. In this study, we identified an Arabidopsis mitochondrial localized ubiquitin protease, UBP27, through a screen that combined bioinformatics and fluorescent fusion protein targeting analysis. We characterized UBP27 with respect to its membrane topology and enzymatic activities, and analysed the mitochondrial morphological changes in UBP27T‐DNA insertion mutants and overexpression lines. We have shown that UBP27 is embedded in the mitochondrial outer membrane with an Nin–Cout orientation and possesses ubiquitin protease activities in vitro. UBP27 demonstrates similar sub‐cellular localization, domain structure, membrane topology and enzymatic activities with two mitochondrial deubiquitinases, yeast ScUBP16 and human HsUSP30, which indicated that these proteins are functional orthologues in eukaryotes. Although loss‐of‐function mutants of UBP27 do not show obvious phenotypes in plant growth and mitochondrial morphology, UBP27 overexpression can change mitochondrial morphology from rod to spherical shape and reduce the mitochondrial association of dynamin‐related protein 3 (DRP3) proteins, large GTPases that serve as the main mitochondrial fission factors. Thus, our study has uncovered a plant ubiquitin protease that plays a role in mitochondrial morphogenesis possibly through modulation of the function of organelle division proteins. 相似文献
19.
INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C‐mediated flowering pathways in Arabidopsis 下载免费PDF全文
Jae‐Hyung Lee Jae‐Hoon Jung Chung‐Mo Park 《The Plant journal : for cell and molecular biology》2015,84(1):29-40
Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold‐activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1‐FLC‐SOC1 signaling network contributes to the fine‐tuning of flowering during changing seasons. 相似文献
20.
Lack of fructose 2,6‐bisphosphate compromises photosynthesis and growth in Arabidopsis in fluctuating environments 下载免费PDF全文
Alistair J. McCormick Nicholas J. Kruger 《The Plant journal : for cell and molecular biology》2015,81(5):670-683
The balance between carbon assimilation, storage and utilisation during photosynthesis is dependent on partitioning of photoassimilate between starch and sucrose, and varies in response to changes in the environment. However, the extent to which the capacity to modulate carbon partitioning rapidly through short‐term allosteric regulation may contribute to plant performance is unknown. Here we examine the physiological role of fructose 2,6‐bisphosphate (Fru‐2,6‐P2) during photosynthesis, growth and reproduction in Arabidopsis thaliana (L.). In leaves this signal metabolite contributes to coordination of carbon assimilation and partitioning during photosynthesis by allosterically modulating the activity of cytosolic fructose‐1,6‐bisphosphatase. Three independent T‐DNA insertional mutant lines deficient in 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase (F2KP), the bifunctional enzyme responsible for both the synthesis and degradation of Fru‐2,6‐P2, lack Fru‐2,6‐P2. These plants have normal steady‐state rates of photosynthesis, but exhibit increased partitioning of photoassimilate into sucrose and have delayed photosynthetic induction kinetics. The F2KP‐deficient plants grow normally in constant environments, but show reduced growth and seed yields relative to wildtype plants in fluctuating light and/or temperature. We conclude that Fru‐2,6‐P2 is required for optimum regulation of photosynthetic carbon metabolism under variable growth conditions. These analyses suggest that the capacity of Fru‐2,6‐P2 to modulate partitioning of photoassimilate is an important determinant of growth and fitness in natural environments. 相似文献