首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Flowerless trait is highly desirable for poplar because it can prevent pollen‐ and seed‐mediated transgene flow. We have isolated the second intron of PTAG2, an AGAMOUS (AG) orthologue from Populus trichocarpa. By fusing this intron sequence to a minimal 35S promoter sequence, we created two artificial promoters, fPTAG2I (forward orientation of the PTAG2 intron sequence) and rPTAG2I (reverse orientation of the PTAG2 intron sequence). In tobacco, expression of the β‐glucuronidase gene (uidA) demonstrates that the fPTAG2I promoter is non‐floral‐specific, while the rPTAG2I promoter is active in floral buds but with no detectable vegetative activity. Under glasshouse conditions, transgenic tobacco plants expressing the Diphtheria toxin A (DT‐A) gene driven by the rPTAG2I promoter produced three floral ablation phenotypes: flowerless, neuter (stamenless and carpel‐less) and carpel‐less. Further, the vegetative growth of these transgenic lines was similar to that of the wild‐type plants. In field trials during 2014 and 2015, the flowerless transgenic tobacco stably maintained its flowerless phenotype, and also produced more shoot and root biomass when compared to wild‐type plants. In poplar, the rPTAG2I::GUS gene exhibited no detectable activity in vegetative organs. Under field conditions over two growing seasons (2014 to the end of 2015), vegetative growth of the rPTAG2I::DT‐A transgenic poplar plants was similar to that of the wild‐type plants. Our results demonstrate that the rPTAG2I artificial promoter has no detectable activities in vegetative tissues and organs, and the rPTAG2I::DT‐A gene may be useful for producing flowerless poplar that retains normal vegetative growth.  相似文献   

4.
5.
6.
Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal‐specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal‐specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal‐specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β‐glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal‐specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA‐like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal‐specific promoter in molecular breeding of floricultural crops.  相似文献   

7.
During anther development the male gametophyte develops inside the locule and the tapetal cells provide all nutrients for its development. Magnesium Transporter 5 (MGT5) is a member of the MGT family and has dual functions of Mg export and import. Here, we show that male gametophyte mitosis and intine formation are defective in a mgt5 mutant. The transient expression of GFP‐MGT5 revealed that MGT5 is localized in the plasma membrane. These findings suggest that in the male gametophyte MGT5 plays a role in importing Mg from the locule and that Mg is essential for male gametophyte development. The expression of MGT5 in the knockout ABORTED MICROSPORES (AMS) mutant (AMS being an essential regulator of tapetum) is tremendously reduced. Chromatin immunoprecipitation and mobility shift assay experiments demonstrated that AMS can directly bind the promoter of MGT5. An immunoelectron microscopy assay revealed that MGT5‐His is localized to the plasma membrane of the tapetum. These findings suggest that AMS directly regulates MGT5 in the tapetum and thus induces export of Mg into the locule. The mgt5 plant exhibits severe male sterility while the expression of MGT5 under the tapetum‐specific promoter A9 partly rescued mgt5 fertility. mgt5 fertility was restored under high‐Mg conditions. These findings suggest that the mgt5 tapetum still has the ability to export Mg and that a sufficient supply of Mg from the tapetum can improve the importation of Mg in the mgt5 male gametophyte. Therefore, MGT5 plays an important role in Mg transport from the tapetum to the microspore.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Light and abiotic stress both strongly modulate plant growth and development. However, the effect of light‐responsive factors on growth and abiotic stress responses in wheat (Triticum aestivum) is unknown. G–box binding factors (GBFs) are blue light‐specific components, but their function in abiotic stress responses has not been studied. Here we identified a wheat GBF1 gene that mediated both the blue light‐ and abiotic stress‐responsive signaling pathways. TaGBF1 was inducible by blue light, salt and exposure to abscisic acid (ABA). TaGBF1 interacted with a G–box light‐responsive element in vitro and promoted a blue‐light response in wheat and Aradidopsis thaliana. Both TaGBF1 over‐expression in wheat and its heterologous expression in A. thaliana heighten sensitivity to salinity and ABA, but its knockdown in wheat conferred resistance to high salinity and ABA. The expression of AtABI5, a key component of the ABA signaling pathway in A. thaliana, and its homolog Wabi5 in wheat was increased by transgenic expression of TaGBF1. The hypersensitivity to salt and ABA caused by TaGBF1 was not observed in the abi5 mutant background, showing that ABI5 is the mediator in TaGBF1‐induced abiotic stress responses. However, the hypersensitivity to salt conferred by TaGBF1 is not dependent on light. This suggests that TaGBF1 is a common component of blue light‐ and abiotic stress‐responsive signaling pathways.  相似文献   

15.
16.
17.
18.
为探究不同启动子对陆地棉GhCDPK1基因抗逆功能的影响,该研究克隆了长度为824bp和1 524bp的2个拟南芥RD29A的启动子序列,分别构建了35S启动子和2个RD29A启动子驱动的GhCDPK1融合表达载体,并利用农杆菌介导法转化烟草,分析了其驱动的转GhCDPK1基因烟草,在逆境胁迫处理后的表型变化,叶绿素、丙二醛(MDA)和脯氨酸含量,过氧化物酶(POD)和超氧化物歧化酶(SOD)活性以及细胞膜透性的生理变化。结果显示:RD29A启动子驱动的转GhCDPK1基因烟草,比35S启动子驱动表现出更强的耐逆性,其叶绿素含量、脯氨酸含量以及POD、SOD活性都高于35S启动子,而MDA含量与细胞膜的通透性低于35S启动子,且1 524bp的RD29A2启动子片段驱动转GhCDPK1基因烟草的耐胁迫能力比824bp启动子片段更强。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号