首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wheat powdery mildew resistance mechanisms have been studied extensively at genomic level, however, infection induced mitochondrial proteomic changes in resistant line have not been fully characterized. Being critical organelles of chemical energy metabolism, mitochondria have also been suggested to be involved in the environmental stress response. Using proteomic approaches, we did comparative analysis of mitochondrial proteome in resistant wheat near‐isogenic line (NIL) (Brock × Jing4117) and its recurrent parent Jing 411 after infection of Blumeria graminis f.sp. tritici (Bgt). More than 50 down‐regulated mitochondrial protein spots were identified in NIL after 24‐h pathogen inoculation, and their abundance recovered to the levels prior to infection after extended inoculation (72‐h). We further analyzed a subgroup of down‐regulated proteins using mass spectrometry. MS/MS data analysis revealed the identities of nine protein spots and assigned them into three functional classes: synthesis of protein, disease resistance response and energy metabolism. For the first time we demonstrated pathogen stress induced mitochondrial proteomic changes and provided evidences that wheat powdery mildew resistance involves multiple biochemical events. Moreover, our results indicate that wheat mitochondrial proteome analysis can serve as a powerful tool to identify potential regulators of fungal invasion resistance.  相似文献   

2.
Recent studies have identified that proteinaceous effectors secreted by Parastagonospora nodorum are required to cause disease on wheat. These effectors interact in a gene‐for‐gene manner with host‐dominant susceptibilty loci, resulting in disease. However, whilst the requirement of these effectors for infection is clear, their mechanisms of action remain poorly understood. A yeast‐two‐hybrid library approach was used to search for wheat proteins that interacted with the necrotrophic effector SnTox3. Using this strategy we indentified an interaction between SnTox3 and the wheat pathogenicity‐related protein TaPR‐1‐1, and confirmed it by in‐planta co‐immunprecipitation. PR‐1 proteins represent a large family (23 in wheat) of proteins that are upregulated early in the defence response; however, their function remains ellusive. Interestingly, the P. nodorum effector SnToxA has recently been shown to interact specifically with TaPR‐1‐5. Our analysis of the SnTox3–TaPR‐1 interaction demonstrated that SnTox3 can interact with a broader range of TaPR‐1 proteins. Based on these data we utilised homology modeling to predict, and validate, regions on TaPR‐1 proteins that are likely to be involved in the SnTox3 interaction. Precipitating from this work, we identified that a PR‐1‐derived defence signalling peptide from the C‐terminus of TaPR‐1‐1, known as CAPE1, enhanced the infection of wheat by P. nodorum in an SnTox3‐dependent manner, but played no role in ToxA‐mediated disease. Collectively, our data suggest that P. nodorum has evolved unique effectors that target a common host‐protein involved in host defence, albeit with different mechanisms and potentially outcomes.  相似文献   

3.
Benthic diatoms live in photoautotrophic/heterotrophic biofilm communities embedded in a matrix of secreted extracellular polymeric substances. Closely associated bacteria influence their growth, aggregation, and secretion of exopolymers. We have studied a diatom/bacteria model community, in which a marine Roseobacter strain is able to grow with secreted diatom exopolymers as a sole source of carbon. The strain influences the aggregation of Phaeodactylum tricornutum by inducing a morphotypic transition from planktonic, fusiform cells to benthic, oval cells. Analysis of the extracellular soluble proteome of P. tricornutum in the presence and absence of bacteria revealed constitutively expressed newly identified proteins with mucin‐like domains that appear to be typical for extracellular diatom proteins. In contrast to mucins, the proline‐, serine‐, threonine‐rich (PST) domains in these proteins were also found in combination with protease‐, glucosidase‐ and leucine‐rich repeat‐domains. Bioinformatic functional predictions indicate that several of these newly identified diatom‐specific proteins may be involved in algal defense, intercellular signaling, and aggregation.  相似文献   

4.
Pyrenophora tritici‐repentis causes tan spot, an important foliar disease of wheat. The fungus produces multiple host‐specific toxins, including Ptr ToxB, a chlorosis‐inducing protein encoded by the ToxB gene. A homolog of ToxB is also found in avirulent isolates of the fungus. In order to improve understanding of the role of this homolog and evaluate the general pathogenic ability of P. tritici‐repentis, we compared the proteomes of avirulent race 4 and virulent race 5 isolates of the pathogen. Western blotting analysis revealed the presence of Ptr ToxB in spore germination and culture fluids of race 5 but not race 4. A comprehensive proteome‐level comparison by 2‐DE indicated 133 differentially abundant proteins in the secretome (29 proteins) and mycelium (104 proteins) of races 4 and 5, of which 63 were identified by MS/MS. A number of the proteins found to be up‐regulated in race 5 have been implicated in microbial virulence in other pathosystems, and included the secreted enzymes α‐mannosidase and exo‐β‐1,3‐glucanase, heat‐shock and BiP proteins, and various metabolic enzymes. These proteome‐level differences suggest a reduced general pathogenic ability in race 4 of P. tritici‐repentis, irrespective of toxin production. Such differences may reflect an adaptation to a saprophytic habit.  相似文献   

5.
6.
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

7.
Cocoa seed storage proteins play an important role in flavour development as aroma precursors are formed from their degradation during fermentation. Major proteins in the beans of Theobroma cacao are the storage proteins belonging to the vicilin and albumin classes. Although both these classes of proteins have been extensively characterized, there is still limited information on the expression and abundance of other proteins present in cocoa beans. This work is the first attempt to characterize the whole cocoa bean proteome by nano‐UHPLC‐ESI MS/MS analysis using tryptic digests of cocoa bean protein extracts. The results of this analysis show that >1000 proteins could be identified using a species‐specific Theobroma cacao database. The majority of the identified proteins were involved with metabolism and energy. Additionally, a significant number of the identified proteins were linked to protein synthesis and processing. Several proteins were also involved with plant response to stress conditions and defence. Albumin and vicilin storage proteins showed the highest intensity values among all detected proteins, although only seven entries were identified as storage proteins. A comparison of MS/MS data searches carried out against larger non‐specific databases confirmed that using a species‐specific database can increase the number of identified proteins, and at the same time reduce the number of false positives. The results of this work will be useful in developing tools that can allow the comparison of the proteomic profile of cocoa beans from different genotypes and geographic origins. Data are available via ProteomeXchange with identifier PXD005586.  相似文献   

8.
Peripheral blood mononuclear cells (MNCs) are accessible through blood collection and represent a useful source for investigations on disease mechanisms and treatment response. Aiming to build a reference proteome database, we generated three proteome data sets from MNCs using a combination of SDS‐PAGE and nanoflow LC‐MS. Experiments were performed in triplicates and 514 unique proteins were identified by at least two non‐redundant peptides with 95% confidence for all replicates. Identified proteins are associated with a range of dermatologic, inflammatory and neurological conditions as well as molecular processes, such as free radical scavenging and cellular growth and proliferation. Mapping the MNC proteome provides a valuable resource for studies on disease pathogenesis and the identification of therapeutic targets.  相似文献   

9.
The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life‐history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change‐related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ‐LC‐MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down‐regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down‐regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up‐regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.  相似文献   

10.
As overfertilization leads to environmental concerns and the cost of N fertilizer increases, the issue of how to select crop cultivars that can produce high yields on N‐deficient soils has become crucially important. However, little information is known about the genetic mechanisms by which crops respond to environmental changes induced by N signaling. Here, we dissected the genetic architecture of N‐induced phenotypic plasticity in bread wheat (Triticum aestivum L.) by integrating functional mapping and semiautomatic high‐throughput phenotyping data of yield‐related canopy architecture. We identified a set of quantitative trait loci (QTLs) that determined the pattern and magnitude of how wheat cultivars responded to low N stress from normal N supply throughout the wheat life cycle. This analysis highlighted the phenological landscape of genetic effects exerted by individual QTLs, as well as their interactions with N‐induced signals and with canopy measurement angles. This information may shed light on our mechanistic understanding of plant adaptation and provide valuable information for the breeding of N‐deficiency tolerant wheat varieties.  相似文献   

11.
Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most common and lethal adult malignant brain tumor. The present study was conducted to investigate the alterations in the serum proteome in GBM patients compared to healthy controls. Comparative proteomic analysis was performed employing classical 2DE and 2D‐DIGE combined with MALDI TOF/TOF MS and results were further validated through Western blotting and immunoturbidimetric assay. Comparison of the serum proteome of GBM and healthy subjects revealed 55 differentially expressed and statistically significant (p <0.05) protein spots. Among the identified proteins, haptoglobin, plasminogen precursor, apolipoprotein A‐1 and M, and transthyretin are very significant due to their functional consequences in glioma tumor growth and migration, and could further be studied as glioma biomarkers and grade‐specific protein signatures. Analysis of the lipoprotein pattern indicated elevated serum levels of cholesterol, triacylglycerol, and low‐density lipoproteins in GBM patients. Functional pathway analysis was performed using multiple software including ingenuity pathway analysis (IPA), protein analysis through evolutionary relationships (PANTHER), database for annotation, visualization and integrated discovery (DAVID), and GeneSpring to investigate the biological context of the identified proteins, which revealed the association of candidate proteins in a few essential physiological pathways such as intrinsic prothrombin activation pathway, plasminogen activating cascade, coagulation system, glioma invasiveness signaling, and PI3K signaling in B lymphocytes. A subset of the differentially expressed proteins was applied to build statistical sample class prediction models for discrimination of GBM patients and healthy controls employing partial least squares discriminant analysis (PLS‐DA) and other machine learning methods such as support vector machine (SVM), Decision Tree and Naïve Bayes, and excellent discrimination between GBM and control groups was accomplished.  相似文献   

12.
Pollen grains are tiny structures vital for sexual reproduction and consequently seed and fruit production in angiosperms, and a source of many allergenic components responsible for deleterious implications for health worldwide. Current pollen research is mainly focused on unraveling the molecular mechanisms underlying the pollen germination and tube formation passing from the quiescent stage. In this context, an in‐depth proteome analysis of the pollens from Ricinus communis at three different stages—that is, mature, hydrated, and in vitro germinated—is performed. This analysis results in the identification of 1950 proteins, including 1773, 1313, and 858, from mature, hydrated, and germinated pollens, respectively. Based on label‐free quantification, 164 proteins are found to be significantly differentially abundant from mature to hydrated pollens, 40 proteins from hydrated to germinated, and 57 proteins from mature to germinated pollens, respectively. Most of the differentially abundant proteins are related to protein, carbohydrate, and energy metabolism and signaling. Besides other functional classes, a reasonable number of the proteins are predicted to be allergenic proteins, previously undiscovered. This is the first in‐deep proteome analysis of the R. communis pollens and, to the best of our knowledge, one of the most complete proteome dataset identified from the pollens of any plant species, thus providing a reference proteome for researchers interested in pollen biology.  相似文献   

13.
The manipulation of meiotic recombination in crops is essential to develop new plant varieties rapidly, helping to produce more cultivars in a sustainable manner. One option is to control the formation and repair of the meiosis‐specific DNA double‐strand breaks (DSBs) that initiate recombination between the homologous chromosomes and ultimately lead to crossovers. These DSBs are introduced by the evolutionarily conserved topoisomerase‐like protein SPO11 and associated proteins. Here, we characterized the homoeologous copies of the SPO11‐1 protein in hexaploid bread wheat (Triticum aestivum). The genome contains three SPO11‐1 gene copies that exhibit 93–95% identity at the nucleotide level, and clearly the A and D copies originated from the diploid ancestors Triticum urartu and Aegilops tauschii, respectively. Furthermore, phylogenetic analysis of 105 plant genomes revealed a clear partitioning between monocots and dicots, with the seven main motifs being almost fully conserved, even between clades. The functional similarity of the proteins among monocots was confirmed through complementation analysis of the Oryza sativa (rice) spo11‐1 mutant by the wheat TaSPO11‐1‐5D coding sequence. Also, remarkably, although the wheat and Arabidopsis SPO11‐1 proteins share only 55% identity and the partner proteins also differ, the TaSPO11‐1‐5D cDNA significantly restored the fertility of the Arabidopsis spo11‐1 mutant, indicating a robust functional conservation of the SPO11‐1 protein activity across distant plants. These successful heterologous complementation assays, using both Arabidopsis and rice hosts, are good surrogates to validate the functionality of candidate genes and cDNA, as well as variant constructs, when the transformation and mutant production in wheat is much longer and more tedious.  相似文献   

14.
In Central and Southern Italy, where durum wheat represents one of the most widely cultivated crops, grain filling occurs during Spring, a period characterized by sudden increases in temperature. Wheat grain proteins are classified into albumins, globulins, and prolamins. The nonprolamin fractions include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2‐D patterns of nonprolamin proteins were monitored to identify polypeptides affected by heat stress during grain fill. This study shows that heat stress alters significantly the durum wheat seed proteome, although the changes range is only between 1.2‐ and 2.2‐fold. This analysis revealed 132 differentially expressed polypeptides, 47 of which were identified by MALDI‐TOF and MALDI‐TOF‐TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress‐related proteins. Many of the heat‐induced polypeptides are considered to be allergenic for sensitive individuals.  相似文献   

15.
Antibody‐based microarrays is a rapidly evolving technology that has gone from the first proof‐of‐concept studies to more demanding proteome profiling applications, during the last years. Miniaturized microarrays can be printed with large number of antibodies harbouring predetermined specificities, capable of targeting high‐ as well as low‐abundant analytes in complex, nonfractionated proteomes. Consequently, the resolution of such proteome profiling efforts correlate directly to the number of antibodies included, which today is a key limiting factor. To overcome this bottleneck and to be able to perform in‐depth global proteome surveys, we propose to interface affinity proteomics with MS‐based read‐out, as outlined in this technical perspective. Briefly, we have defined a range of peptide motifs, each motif being present in 5–100 different proteins. In this manner, 100 antibodies, binding 100 different motifs commonly distributed among different proteins, would potentially target a protein cluster of 104 individual molecules, i.e. around 50% of the nonredundant human proteome. Notably, these motif‐specific antibodies would be directly applicable to any proteome in a specie independent manner and not biased towards abundant proteins or certain protein classes. The biological sample is digested, exposed to these immobilized antibodies, whereby motif‐containing peptides are specifically captured, enriched and subsequently detected and identified using MS.  相似文献   

16.
Winter hardiness is important for the adaptation of wheat to the harsh winter conditions in temperate regions and is thus also an important breeding goal. Here, we employed a panel of 407 European winter wheat cultivars to dissect the genetic architecture of winter hardiness. We show that copy number variation (CNV) of CBF (C‐repeat Binding Factor) genes at the Fr‐A2 locus is the essential component for winter survival, with CBF‐A14 CNV being the most likely causal polymorphism, accounting for 24.3% of the genotypic variance. Genome‐wide association mapping identified several markers in the Fr‐A2 chromosomal region, which even after accounting for the effects of CBF‐A14 copy number explained approximately 15% of the genotypic variance. This suggests that additional, as yet undiscovered, polymorphisms are present at the Fr‐A2 locus. Furthermore, CNV of Vrn‐A1 explained an additional 3.0% of the genotypic variance. The allele frequencies of all loci associated with winter hardiness were found to show geographic patterns consistent with their role in adaptation. Collectively, our results from the candidate gene analysis, association mapping and genome‐wide prediction show that winter hardiness in wheat is a quantitative trait, but with a major contribution of the Fr‐A2 locus.  相似文献   

17.
Kernel size is an important trait determining cereal yields. In this study, we cloned and characterized TaDA1, a conserved negative regulator of kernel size in wheat (Triticum aestivum). The overexpression of TaDA1 decreased the size and weight of wheat kernels, while its down‐regulation using RNA interference (RNAi) had the opposite effect. Three TaDA1‐A haplotypes were identified in Chinese wheat core collections, and a haplotype association analysis showed that TaDA1‐A‐HapI was significantly correlated with the production of larger kernels and higher kernel weights in modern Chinese cultivars. The haplotype effect resulted from a difference in TaDA1‐A expression levels between genotypes, with TaDA1‐A‐HapI resulting in lower TaDA1‐A expression levels. This favourable haplotype was found having been positively selected during wheat breeding over the last century. Furthermore, we demonstrated that TaDA1‐A physically interacts with TaGW2‐B. The additive effects of TaDA1‐A and TaGW2‐B on kernel weight were confirmed not only by the phenotypic enhancement arising from the simultaneous down‐regulation of TaDA1 and TaGW2 expression, but also by the combinational haplotype effects estimated from multi‐environment field data from 348 wheat cultivars. A comparative proteome analysis of developing transgenic and wild‐type grains indicated that TaDA1 and TaGW2 are involved in partially overlapping but relatively independent protein regulatory networks. Thus, we have identified an important gene controlling kernel size in wheat and determined its interaction with other genes regulating kernel weight, which could have beneficial applications in wheat breeding.  相似文献   

18.
Protein phosphorylation regulates a wide range of cellular processes. Here, we report the proteome‐wide mapping of in vivo phosphorylation sites in Arabidopsis by using complementary phosphopeptide enrichment techniques coupled with high‐accuracy mass spectrometry. Using unfractionated whole cell lysates of Arabidopsis, we identified 2597 phosphopeptides with 2172 high‐confidence, unique phosphorylation sites from 1346 proteins. The distribution of phosphoserine, phosphothreonine, and phosphotyrosine sites was 85.0, 10.7, and 4.3%. Although typical tyrosine‐specific protein kinases are absent in Arabidopsis, the proportion of phosphotyrosines among the phospho‐residues in Arabidopsis is similar to that in humans, where over 90 tyrosine‐specific protein kinases have been identified. In addition, the tyrosine phosphoproteome shows features distinct from those of the serine and threonine phosphoproteomes. Taken together, we highlight the extent and contribution of tyrosine phosphorylation in plants.  相似文献   

19.
Wheat grain storage proteins (GSPs) make up most of the protein content of grain and determine flour end‐use value. The synthesis and accumulation of GSPs depend highly on nitrogen (N) and sulfur (S) availability and it is important to understand the underlying control mechanisms. Here we studied how the einkorn (Triticum monococcum ssp. monococcum) grain proteome responds to different amounts of N and S supply during grain development. GSP composition at grain maturity was clearly impacted by nutrition treatments, due to early changes in the rate of GSP accumulation during grain filling. Large‐scale analysis of the nuclear and albumin‐globulin subproteomes during this key developmental phase revealed that the abundance of 203 proteins was significantly modified by the nutrition treatments. Our results showed that the grain proteome was highly affected by perturbation in the N:S balance. S supply strongly increased the rate of accumulation of S‐rich α/β‐gliadin and γ‐gliadin, and the abundance of several other proteins involved in glutathione metabolism. Post‐anthesis N supply resulted in the activation of amino acid metabolism at the expense of carbohydrate metabolism and the activation of transport processes including nucleocytoplasmic transit. Protein accumulation networks were analyzed. Several central actors in the response were identified whose variation in abundance was related to variation in the amounts of many other proteins and are thus potentially important for GSP accumulation. This detailed analysis of grain subproteomes provides information on how wheat GSP composition can possibly be controlled in low‐level fertilization condition.  相似文献   

20.
Aphids are major insect pests of cereal crops, acting as virus vectors as well as causing direct damage. The responses of wheat to infestation by cereal aphid (Sitobion avenae) were investigated in a proteomic analysis. Approximately, 500 protein spots were reproducibly detected in the extracts from leaves of wheat seedlings after extraction and 2‐DE. Sixty‐seven spots differed significantly between control and infested plants following 24 h of aphid feeding, with 27 and 11 up‐regulated, and 8 and 21 down‐regulated, in local or systemic tissues, respectively. After 8 days, 80 protein spots differed significantly between control and aphid treatments with 13 and 18 up‐regulated and 27 and 22 down‐regulated in local or systemic tissues, respectively. As positive controls, plants were treated with salicylic acid or methyl jasmonate; 81 and 37 differentially expressed protein spots, respectively, were identified for these treatments. Approximately, 50% of differentially expressed protein spots were identified by PMF, revealing that the majority of proteins altered by aphid infestation were involved in metabolic processes and photosynthesis. Other proteins identified were involved in signal transduction, stress and defence, antioxidant activity, regulatory processes, and hormone responses. Responses to aphid attack at the proteome level were broadly similar to basal non‐specific defence and stress responses in wheat, with evidence of down‐regulation of insect‐specific defence mechanisms, in agreement with the observed lack of aphid resistance in commercial wheat lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号