首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homologous recombination (HR) is a key process during meiosis in reproductive cells and the DNA damage repair process in somatic cells. Although chromatin structure is thought to be crucial for HR, only a small number of chromatin modifiers have been studied in HR regulation so far. Here, we investigated the function of CURLY LEAF (CLF), a Polycomb‐group (PcG) gene responsible for histone3 lysine 27 trimethylation (H3K27me3), in somatic and meiotic HR in Arabidopsis thaliana. Although fluorescent protein reporter assays in pollen and seeds showed that the frequency of meiotic cross‐over in the loss‐of‐function mutant clf‐29 was not significantly different from that in wild type, there was a lower frequency of HR in clf‐29 than in wild type under normal conditions and under bleomycin treatment. The DNA damage levels were comparable between clf‐29 and wild type, even though several DNA damage repair genes (e.g. ATM, BRCA2a, RAD50, RAD51, RAD54, and PARP2) were expressed at lower levels in clf‐29. Under bleomycin treatment, the expression levels of DNA repair genes were similar in clf‐29 and wild type, thus CLF may also regulate HR via other mechanisms. These findings expand the current knowledge of PcG function and contribute to general interests of epigenetic regulation in genome stability regulation.  相似文献   

2.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error‐free branch of post‐replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication‐associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single‐strand break repair (AtPARP1), as well as microhomology‐mediated double‐strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM‐mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.  相似文献   

3.
DNA lesions such as crosslinks represent obstacles for the replication machinery. Nonetheless, replication can proceed via the DNA damage tolerance pathway also known as postreplicative repair pathway. SNF2 ATPase Rad5 homologs, such as RAD5A of the model plant Arabidopsis thaliana, are important for the error‐free mode of this pathway. We able to demonstrate before, that RAD5A is a key factor in the repair of DNA crosslinks in Arabidopsis. Here, we show by in vitro analysis that AtRAD5A protein is a DNA translocase able to catalyse fork regression. Interestingly, replication forks with a gap in the leading strand are processed best, in line with its suggested function. Furthermore AtRAD5A catalyses branch migration of a Holliday junction and is furthermore not impaired by the DNA binding of a model protein, which is indicative of its ability to displace other proteins. Rad5 homologs possess HIRAN (Hip116, Rad5; N‐terminal) domains. By biochemical analysis we were able to demonstrate that the HIRAN domain variant from Arabidopsis RAD5A mediates structure selective DNA binding without the necessity for a free 3′OH group as has been shown to be required for binding of HIRAN domains in a mammalian RAD5 homolog. The biological importance of the HIRAN domain in AtRAD5A is demonstrated by our result that it is required for its function in DNA crosslink repair in vivo.  相似文献   

4.
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology‐dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock‐out mutants in RAD51B, one of the Rad51 paralogs of Athaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B‐dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double‐stranded breaks (measured as γ‐H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S‐phase, and is ATM‐independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non‐transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double‐stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single‐stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability.  相似文献   

5.
Proteins essential for homologous recombination play a pivotal role in the repair of DNA double strand breaks, DNA inter-strand crosslinks and replication fork stability. Defects in homologous recombination also play a critical role in the development of cancer and the sensitivity of these cancers to chemotherapy. RAD51, an essential factor for homologous recombination and replication fork protection, accumulates and forms immunocytochemically detectable nuclear foci at sites of DNA damage. To identify kinases that may regulate RAD51 localization to sites of DNA damage, we performed a human kinome siRNA library screen, using DNA damage-induced RAD51 foci formation as readout. We found that NEK8, a NIMA family kinase member, is required for efficient DNA damage-induced RAD51 foci formation. Interestingly, knockout of Nek8 in murine embryonic fibroblasts led to cellular sensitivity to the replication inhibitor, hydroxyurea, and inhibition of the ATR kinase. Furthermore, NEK8 was required for proper replication fork protection following replication stall with hydroxyurea. Loading of RAD51 to chromatin was decreased in NEK8-depleted cells and Nek8-knockout cells. Single-molecule DNA fiber analyses revealed that nascent DNA tracts were degraded in the absence of NEK8 following treatment with hydroxyurea. Consistent with this, Nek8-knockout cells showed increased chromosome breaks following treatment with hydroxyurea. Thus, NEK8 plays a critical role in replication fork stability through its regulation of the DNA repair and replication fork protection protein RAD51.  相似文献   

6.
A possible role for structure‐specific recognition protein 1 (SSRP1) in replication‐associated repair processes has previously been suggested based on its interaction with several DNA repair factors and the replication defects observed in SSRP1 mutants. In this study, we investigated the potential role of SSRP1 in association with DNA repair mediated by homologous recombination (HR), one of the pathways involved in repairing replication‐associated DNA damage, in mammalian cells. Surprisingly, over‐expression of SSRP1 reduced the number of hprt+ recombinants generated via HR both spontaneously and upon hydroxyurea (HU) treatment, whereas knockdown of SSRP1 resulted in an increase of HR events in response to DNA double‐strand break formation. In correlation, we found that the depletion of SSRP1 in HU‐treated human cells elevated the number of Rad51 and H2AX foci, while over‐expression of the wild‐type SSRP1 markedly reduced HU‐induced Rad51 foci formation. We also found that SSRP1 physically interacts with a key HR repair protein, Rad54 both in vitro and in vivo. Further, branch migration studies demonstrated that SSRP1 inhibits Rad54‐promoted branch migration of Holliday junctions in vitro. Taken together, our data suggest a functional role for SSRP1 in spontaneous and replication‐associated DNA damage response by suppressing avoidable HR repair events. J. Cell. Biochem. 108: 508–518, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The gene MUS81 (Methyl methansulfonate, UV sensitive) was identified as clone 81 in a two-hybrid screen using the Saccharomyces cerevisiae Rad54 protein as a bait. It encodes a novel protein with a predicted molecular mass of 72,316 (632 amino acids) and contains two helix-hairpin-helix motifs, which are found in many proteins involved in DNA metabolism in bacteria, yeast, and mammals. Mus81p also shares homology with motifs found in the XPF endonuclease superfamily. Deletion of MUS81 caused a recessive methyl methansulfonate- and UV-sensitive phenotype. However, mus81Δ cells were not significantly more sensitive than wild-type to γ-radiation or double-strand breaks induced by HO endonuclease. Double mutant analysis suggests that Rad54p and Mus81p act in one pathway for the repair of, or tolerance to, UV-induced DNA damage. A complex containing Mus81p and Rad54p was identified in immunoprecipitation experiments. Deletion of MUS81 virtually eliminated sporulation in one strain background and reduced sporulation and spore viability in another. Potential homologs of Mus81p have been identified in Schizosaccharomyces pombe, Caenorhabditis elegans and Arabidopsis thaliana. We hypothesize that Mus81p plays a role in the recognition and/or processing of certain types of DNA damage (caused by UV and MMS) during repair or tolerance processes involving the recombinational repair pathway. Received: 9 December 1999 / Accepted: 24 February 2000  相似文献   

9.
Homologous recombination (HR) is a key pathway that repairs DNA double‐strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L–TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L–TONSL associates with replication protein A (RPA)‐coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR‐mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L–TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51‐ssDNA nucleoprotein filament formation and RAD51‐dependent strand exchange activity in vitro. Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L–TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR‐mediated restart in vivo.  相似文献   

10.
Carnosol is a natural compound with pharmacological action due to its anti‐cancer properties. However, the precise mechanism for its anti‐carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double‐strand breaks (DSBs). We also found that cells lacking tyrosyl‐DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl‐DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1‐DNA cleavage complex (TOP1cc) and TOP2‐DNA cleavage complex (TOP2cc). When comparing the accumulation of γ‐H2AX foci and the number of chromosomal aberrations (CAs) with wild‐type (WT) cells, the susceptivity of the TDP1?/? and TDP2?/? cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti‐cancer effect of carnosol.  相似文献   

11.
The assembly of RAD51 recombinase on DNA substrates at sites of breakage is essential for their repair by homologous recombination repair (HRR). The signaling pathway that triggers RAD51 assembly at damage sites to form subnuclear foci is unclear. Here, we provide evidence that c-ABL, a tyrosine kinase activated by DNA damage which phosphorylates RAD51 on Tyr-315, works at a previously unrecognized, proximal step to initiate RAD51 assembly. We first show that c-ABL associates with chromatin after DNA damage in a manner dependent on its kinase activity. Using RAD51 mutants that are unable to oligomerize to form a nucleoprotein filament, we separate RAD51 assembly on DNA to form foci into two steps: stable chromatin association followed by oligomerization. We show that phosphorylation on Tyr-315 by c-ABL is required for chromatin association of oligomerization-defective RAD51 mutants, but is insufficient to restore oligomerization. Our findings suggest a new model for the regulation of early steps of HRR.  相似文献   

12.
A missense mutation in C. elegans RAD-54, a homolog of RAD54 that operates in the homologous recombination (HR) pathway, was found to decrease ATPase activity in vitro. The hypomorphic mutation caused hypersensitivity of C. elegans germ cells to double-strand DNA breaks (DSBs). Although the formation of RAD-51 foci at DSBs was normal in both the mutant and knockdown worms, their subsequent dissipation was slow. The rad-54-deficient phenotypes were greatly aggravated when combined with an xpf-1 mutation, suggesting a conservative role of single-strand annealing (SSA) for DSB repair in HR-defective worms. The phenotypes of doubly-deficient rad-54;xpf-1 worms were partially suppressed by a mutation of lig-4, a nonhomologous end-joining (NHEJ) factor. In summary, RAD-54 is required for the dissociation of RAD-51 from DSB sites in C. elegans germ cells. Also, NHEJ and SSA exert negative and positive effects, respectively, on genome stability when HR is defective.  相似文献   

13.
Accurate DNA double-strand break repair through homologous recombination is essential for preserving genome integrity. Disruption of the gene encoding RAD51, the protein that catalyzes DNA strand exchange during homologous recombination, results in lethality of mammalian cells. Proteins required for homologous recombination, also play an important role during DNA replication. To explore the role of RAD51 in DNA replication and DSB repair, we used a knock-in strategy to express a carboxy-terminal fusion of green fluorescent protein to mouse RAD51 (mRAD51-GFP) in mouse embryonic stem cells. Compared to wild-type cells, heterozygous mRad51+/wt-GFP embryonic stem cells showed increased sensitivity to DNA damage induced by ionizing radiation and mitomycin C. Moreover, gene targeting was found to be severely impaired in mRad51+/wt-GFP embryonic stem cells. Furthermore, we found that mRAD51-GFP foci were not stably associated with chromatin. From these experiments we conclude that this mRad51-GFP allele is an antimorphic allele. When this allele is present in a heterozygous condition over wild-type mRad51, embryonic stem cells are proficient in DNA replication but display defects in homologous recombination and DNA damage repair.  相似文献   

14.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

15.
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund–Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation‐of‐function alleles of SGS1 that suppress the slow growth of top3Δ and rmi1Δ cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild‐type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1‐D664Δ, unlike sgs1Δ, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication‐associated X‐shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1‐D664Δ allele exhibits increased spontaneous RPA foci, suggesting that the persistent X‐structures may contain single‐stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.  相似文献   

16.
Breast cancer is currently among the most common cancers in women, with almost 200,000 new cases diagnosed annually. Dysregulation of DNA repair pathways allows cells to accumulate damage and eventually mutations, with a subsequent reduction in DNA repair capacity in breast tissue, leading to tumorigenesis. One component of the DNA damage repair pathway is RAD52 motif‐containing 1 (RDM1), but the specific role of RDM1 in breast cancer and the underlying mechanism remain unclear. Here, we examined the role played by RDM1 in breast cancer cell culture using the HBL100 and MCF‐7 breast cancer cell lines. Disruption of RDM1 reduced in vitro cell proliferation and promoted apoptosis. Knockdown of RDM1 also induced up‐regulation of p53 levels, whereas RAD51 and RAD52, both involved in DNA repair, were down‐regulated. In addition, the in vivo growth of RDM1‐deficient cells was significantly repressed, suggesting that RDM1 is a novel oncogenic protein in human breast cancer cells. This study reveals a link between the DNA damage response pathway and oncogenic functionality in breast cancer. Accordingly, therapeutic targeting of RDM1 is a potential treatment strategy for breast cancer and overcoming drug resistance.  相似文献   

17.
18.
The plant mitochondrial DNA‐binding protein ODB1 was identified from a mitochondrial extract after DNA‐affinity purification. ODB1 (organellar DNA‐binding protein 1) co‐purified with WHY2, a mitochondrial member of the WHIRLY family of plant‐specific proteins involved in the repair of organellar DNA. The Arabidopsis thaliana ODB1 gene is identical to RAD52‐1, which encodes a protein functioning in homologous recombination in the nucleus but additionally localizing to mitochondria. We confirmed the mitochondrial localization of ODB1 by in vitro and in vivo import assays, as well as by immunodetection on Arabidopsis subcellular fractions. In mitochondria, WHY2 and ODB1 were found in large nucleo‐protein complexes. Both proteins co‐immunoprecipitated in a DNA‐dependent manner. In vitro assays confirmed DNA binding by ODB1 and showed that the protein has higher affinity for single‐stranded than for double‐stranded DNA. ODB1 showed no sequence specificity in vitro. In vivo, DNA co‐immunoprecipitation indicated that ODB1 binds sequences throughout the mitochondrial genome. ODB1 promoted annealing of complementary DNA sequences, suggesting a RAD52‐like function as a recombination mediator. Arabidopsis odb1 mutants were morphologically indistinguishable from the wild‐type, but following DNA damage by genotoxic stress, they showed reduced mitochondrial homologous recombination activity. Under the same conditions, the odb1 mutants showed an increase in illegitimate repair bypasses generated by microhomology‐mediated recombination. These observations identify ODB1 as a further component of homologous recombination‐dependent DNA repair in plant mitochondria.  相似文献   

19.
20.
Bacteria and eukaryotic cells employ a variety of enzymatic pathways to remove damage from DNA or to lessen its impact upon cellular functions. Most of these processes were discovered in Escherichia coli and have been most extensively analyzed in this organism because suitable mutants have been isolated and characterized. Analogous pathways have been inferred to exist in mammalian cells from the presence of enzyme activities similar to those known to be involved in repair in bacteria, from the analysis of events in cells treated with DNA damaging agents, and from the analysis of the few naturally occurring mutant cell types. Excision repair of pyrimidine dimers produced by UV in E coli is initiated by an incision event catalyzed by a complex composed of uvrA, uvrB, and uvrC gene products. Multiple exonuclease and polymerase activities are available for the subsequent excision and resynthesis steps. In addition to the constitutive pathway, which produces short patches of 20–30 nucleotides, an inducible excision repair process exists that produces much longer patches. This long patch pathway is controlled by the recA-lexA regulatory circuit and also requires the recF gene. It is apparently not responsible for UV-induced mutagenesis. However, the ability to perform inducible long patch repair correlates with enhanced bacterial survival and with a major component of the Weigle reactivation of bacteriophage with double-strand DNA genomes. Mammalian cells possess an excision repair pathway similar to the constitutive pathway in E coli. Although not as well understood, the incision event is at least as complex, and repair resynthesis produces patches of about the same size as the constitutive short patches. In mammalian cells, no patches comparable in size to those produced by the inducible pathway of E coli are observed. Repair in mammalian cells may be more complicated than in bacteria because of the structure of chromatin, which can affect both the distribution of DNA damage and its accessibility to repair enzymes. A coordinated alteration and reassembly of chromatin at sites of repair may be required. We have observed that the sensitivity of digestion by staphylococcal nuclease (SN) of newly synthesized repair patches resulting from excision of furocoumarin adducts changes with time in the same way as that of patches resulting from excision of pyrimidine dimers. Since furocoumarin adducts are formed only in the SN-sensitive linker DNA between nucleosome cores, this suggests that after repair resynthesis is completed, the nucleosome cores in the region of the repair event do not return exactly to their original positions. We have also studied excision repair of UV and chemical damage in the highly repeated 172 base pair α DNA sequence in African green monkey cells. In UV irradiated cells, the rate and extent of repair resynthesis in this sequence is similar to that in bulk DNA. However, in cells containing furocoumarin adducts, repair resynthesis in α DNA is only about 30% of that in bulk DNA. Since the frequency of adducts does not seem to be reduced in α DNA, it appears that certain adducts in this unique DNA may be less accessible to repair. Endonuclease V of bacteriophage T4 incises DNA at pyrimidine dimers by cleaving first the glycosylic bond between deoxyribose and the 5′ pyrimidine of the dimer and then the phosphodiester bond between the two pyrimidines. We have cloned the gene (denV) that codes for this enzyme and have demonstrated its expression in uvrA recA and uvrB recA cells of E coli. Because T4 endonuclease V can alleviate the excision repair deficiency of xeroderma pigmentosum when added to permeabilized cells or to isolated nuclei after UV irradiation, the cloned denV gene may ultimately be of value for analyzing DNA repair pathways in cultured human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号