首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Understanding the mechanism of arsenic (As) accumulation in plants is important in reducing As's toxicity to plants and its potential risks to human health. Here, we performed a genome‐wide association study to dissect the genetic basis of the As contents of different maize tissues in Xixian, which was irrigated with As‐rich surface water, and Changge using an association population consisting of 230 representative maize inbred lines. Phenotypic data revealed a wide normal distribution and high repeatability for the As contents in maize tissues. The As concentrations in maize tissues followed the same trend in the two locations: kernels < axes < stems < bracts < leaves. In total, 15, 16 and 15 non‐redundant quantitative trait loci (QTL s) associated with As concentrations were identified (P  ≤ 2.04 × 10?6) in five tissues from Xixian, Changge, and the combination of the locations, respectively, explaining 9.70%–24.65% of the phenotypic variation for each QTL , on average. Additionally, four QTL s [involving 15 single nucleotide polymorphisms (SNP s)] were detected in the single and the combined locations, indicating that these loci/SNP s might be stable across different environments. The candidate genes associated with these four loci were predicted. In addition, four non‐redundant QTL s (6 SNP s), including a QTL that was detected in multiple locations according to the genome‐wide association study, were found to co‐localize with four previously reported QTL intervals. These results are valuable to understand the genetic architecture of As mechanism in maize and facilitate the genetic improvement of varieties without As toxicity.  相似文献   

3.
Although tocopherols play an important role in plants and animals, the genetic architecture of tocopherol content in maize kernels has remained largely unknown. In this study, linkage and association analyses were conducted to examine the genetic architecture of tocopherol content in maize kernels. Forty‐one unique quantitative trait loci (QTLs) were identified by linkage mapping in six populations of recombinant inbred lines (RILs). In addition, 32 significant loci were detected via genome‐wide association study (GWAS), 18 of which colocalized with the QTLs identified by linkage mapping. Fine mapping of a major QTL validated the accuracy of GWAS and QTL mapping results and suggested a role for nontocopherol pathway genes in the modulation of natural tocopherol variation. We provided genome‐wide evidence that genes involved in fatty acid metabolism, chlorophyll metabolism and chloroplast function may affect natural variation in tocopherols. These findings were confirmed through mutant analysis of a particular gene from the fatty acid pathway. In addition, the favourable alleles for many of the significant SNPs/QTLs represented rare alleles in natural populations. Together, our results revealed many novel genes that are potentially involved in the variation of tocopherol content in maize kernels. Pyramiding of the favourable alleles of the newly elucidated genes and the well‐known tocopherol pathway genes would greatly improve tocopherol content in maize.  相似文献   

4.
Mastitis is the most frequent and costly disease in dairy production and solutions leading to a reduction in the incidence of mastitis are highly demanded. Here a genome-wide association study was performed to identify polymorphisms affecting susceptibility to mastitis. Genotypes for 17 349 SNPs distributed across the 29 bovine autosomal chromosomes from a total of 2589 sires with 1 389 776 daughters with records on clinical mastitis were included in the analysis. Records of occurrence of clinical mastitis were divided into seven time periods in the first three lactations in order to identify quantitative trait loci affecting mastitis susceptibility in particular phases of lactation. The most convincing results from the association mapping were followed up and validated by a combined linkage disequilibrium and linkage analysis. The study revealed quantitative trait loci affecting occurrence of clinical mastitis in the periparturient period on chromosomes 2, 6 and 20 and a quantitative trait locus affecting occurrence of clinical mastitis in late lactation on chromosome 14. None of the quantitative trait loci for clinical mastitis detected in the study seemed to affect lactation average of somatic cell score. The SNPs highly associated with clinical mastitis lie near both the gene encoding interleukin 8 on chromosome 6 and the genes encoding the two interleukin 8 receptors on chromosome 2.  相似文献   

5.
High yield and wide adaptation are principal targets of wheat breeding but are hindered by limited knowledge on genetic basis of agronomic traits and abiotic stress tolerances. In this study, 277 wheat accessions were phenotyped across 30 environments with non‐stress, drought‐stressed, heat‐stressed, and drought‐heat‐stressed treatments and were subjected to genome‐wide association study using 395 681 single nucleotide polymorphisms. We detected 295 associated loci including consistent loci for agronomic traits across different treatments and eurytopic loci for multiple abiotic stress tolerances. A total of 22 loci overlapped with quantitative trait loci identified by biparental quantitative trait loci mapping. Six loci were simultaneously associated with agronomic traits and abiotic stress tolerance, four of which fell within selective sweep regions. Selection in Chinese wheat has increased the frequency of superior marker alleles controlling yield‐related traits in the four loci during past decades, which conversely diminished favourable genetic variation controlling abiotic stress tolerance in the same loci; two promising candidate paralogous genes colocalized with such loci, thereby providing potential targets for studying the molecular mechanism of stress tolerance–productivity trade‐off. These results uncovering promising alleles controlling agronomic traits and/or multiple abiotic stress tolerances, providing insights into heritable covariation between yield and abiotic stress tolerance, will accelerate future efforts for wheat improvement.  相似文献   

6.
Drought often delays developmental events so that plant height and above-ground biomass are reduced, resulting in yield loss due to inadequate photosynthate. In this study, plant height and biomass measured by the Normalized Difference Vegetation Index (NDVI) were used as criteria for drought tolerance. A total of 305 lines representing temperate, tropical and subtropical maize germplasm were genotyped using two single nucleotide polymorphism (SNP) chips each containing 1536 markers, from which 2052 informative SNPs and 386 haplotypes each constructed with two or more SNPs were used for linkage disequilibrium (LD) or association mapping. Single SNP- and haplotype-based LD mapping identified two significant SNPs and three haplotype loci [a total of four quantitative trait loci (QTL)] for plant height under well-watered and water-stressed conditions. For biomass, 32 SNPs and 12 haplotype loci (30 QTL) were identified using NDVIs measured at seven stages under the two water regimes. Some significant SNP and haplotype loci for NDVI were shared by different stages. Comparing significant loci identified by single SNP- and haplotype-based LD mapping, we found that six out of the 14 chromosomal regions defined by haplotype loci each included at least one significant SNP for the same trait. Significant SNP haplotype loci explained much higher phenotypic variation than individual SNPs. Moreover, we found that two significant SNPs (two QTL) and one haplotype locus were shared by plant height and NDVI. The results indicate the power of comparative LD mapping using single SNPs and SNP haplotypes with QTL shared by plant height and biomass as secondary traits for drought tolerance in maize.  相似文献   

7.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

8.
Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10?6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10?3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize.  相似文献   

9.
An understanding of the genetic and environmental basis of genotype×environment interaction (GEI) is of fundamental importance in plant breeding. In mapping quantitative trait loci (QTLs), suitable genetic populations are grown in different environments causing QTLs×environment interaction (QEI). The main objective of the present study is to show how Partial Least Squares (PLS) regression and Factorial Regression (FR) models using genetic markers and environmental covariables can be used for studying QEI related to GEI. Biomass data were analyzed from a multi-environment trial consisting of 161 lines from a F3:4 maize segregating population originally created with the purpose of mapping QTLs loci and investigating adaptation differences between highland and lowland tropical maize. PLS and FR methods detected 30 genetic markers (out of 86) that explained a sizeable proportion of the interaction of maize lines over four contrasting environments involving two low-altitude sites, one intermediate-altitude site, and one high-altitude site for biomass production. Based on a previous study, most of the 30 markers were associated with QTLs for biomass and exhibited significant QEI. It was found that marker loci in lines with positive GEI for the highland environments contained more highland alleles, whereas marker loci in lines with positive GEI for intermediate and lowland environments contained more lowland alleles. In addition, PLS and FR models identified maximum temperature as the most-important environmental covariable for GEI. Using a stepwise variable selection procedure, a FR model was constructed for GEI and QEI that exclusively included cross products between genetic markers and environmental covariables. Higher maximum temperature in low- and intermediate-altitude sites affected the expression of some QTLs, while minimum temperature affected the expression of other QTLs. Received: 10 January 1999 / Accepted: 12 March 1999  相似文献   

10.
We have tested to what extent the growth ability of several organs of maize share a common genetic control. Every night, leaf elongation rate reaches a maximum value (LERmax) that has a high heritability, is repeatable between experiments and is correlated with final leaf length. Firstly, we summarized quantitative trait loci (QTLs) of LERmax and of leaf length in three mapping populations. Among the 14 consensus QTLs (cQTLs) of leaf length, seven co‐located with cQTLs of LERmax with consistent allelic effects. Nine cQTLs of LERmax (4% of the genome) were highly reliable and confirmed by introgression lines. We then compared these QTLs with those affecting the growths of leaves, shoots, roots or young reproductive organs, detected with the same mapping populations in three field experiments or in literature datasets. Five of the nine most reliable cQTLs of LERmax co‐located with QTLs involved in the growth of other organs (but not in flowering time) with consistent allelic effects. Reciprocally, two‐thirds of the 20 QTLs of growth of different organs co‐located with cQTLs of LERmax. Hence, LERmax, as determined in a phenotyping platform, is an indicator of the growth ability of other organs of the plant in controlled or in‐field conditions.  相似文献   

11.
Soya bean is a major source of edible oil and protein for human consumption as well as animal feed. Understanding the genetic basis of different traits in soya bean will provide important insights for improving breeding strategies for this crop. A genome‐wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of agronomic traits in soya bean. A genotyping‐by‐sequencing (GBS) approach was used to provide dense genome‐wide marker coverage (>47 000 SNPs) for a panel of 304 short‐season soya bean lines. A subset of 139 lines, representative of the diversity among these, was characterized phenotypically for eight traits under six environments (3 sites × 2 years). Marker coverage proved sufficient to ensure highly significant associations between the genes known to control simple traits (flower, hilum and pubescence colour) and flanking SNPs. Between one and eight genomic loci associated with more complex traits (maturity, plant height, seed weight, seed oil and protein) were also identified. Importantly, most of these GWAS loci were located within genomic regions identified by previously reported quantitative trait locus (QTL) for these traits. In some cases, the reported QTLs were also successfully validated by additional QTL mapping in a biparental population. This study demonstrates that integrating GBS and GWAS can be used as a powerful complementary approach to classical biparental mapping for dissecting complex traits in soya bean.  相似文献   

12.
Crop modeling, a widely used tool to predict plant growth and development in heterogeneous environments, has been increasingly integrated with genetic information to improve its predictability. This integration can also shed light on the mechanistic path that connects the genotype to a particular phenotype under specific environments. We implemented a bivariate statistical procedure to map and identify quantitative trait loci (QTLs) that can predict the form of plant growth by estimating cultivar‐specific growth parameters and incorporating these parameters into a mapping framework. The procedure enables the characterization of how QTLs act differently in response to developmental and environmental cues. We used this procedure to map growth parameters of leaf area and mass in a mapping population of the common bean (Phaseolus vulgaris L.). Different sets of QTLs are responsible for various aspects of growth, including the initiation time of growth, growth rate, inflection point and asymptotic growth. A major QTL of a large effect was identified to pleiotropically affect trait expression in distinct environments and different traits expressed on the same organism. The integration of crop models and QTL mapping through our statistical procedure provides a powerful means of building a more precise predictive model of genotype‐phenotype relationships for crops.  相似文献   

13.
Prolonged low temperature phases and short-term cold spells often occur in spring during the crucial stages of early maize (Zea mays L.) development. The effect of low temperature-induced growth retardation at the seedling stage on final yield is poorly studied. Therefore, the aim was to identify genomic regions associated with morpho-physiological traits at flowering and harvest stage and their relationship to previously identified quantitative trait loci (QTLs) for photosynthesis and morpho-physiological traits from the same plants at seedling stage. Flowering time, plant height and shoot biomass components at harvest were measured in a dent mapping population for cold tolerance studies, which was sown in the Swiss Midlands in early and late spring in two consecutive years. Early-sown plants exhibited chilling stress during seedling stage, whereas late-sown plants grew under favorable conditions. Significant QTLs, which were stable across environments, were found for plant height and for the time of flowering. The QTLs for flowering were frequently co-localized with QTLs for plant height or ear dry weight. The comparison with QTLs detected at seedling stage revealed only few common QTLs. A pleiotropic effect was found on chromosome 3 which revealed that a good photosynthetic performance of the seedling under warm conditions had a beneficial effect on plant height and partially on biomass at harvest. However, a high chilling tolerance of the seedling seemingly had an insignificant or small negative effect on the yield.  相似文献   

14.
Genome‐wide association (GWA) studies can identify quantitative trait loci (QTL) putatively underlying traits of interest, and nested association mapping (NAM) can further assess allelic series. Near‐isogenic lines (NILs) can be used to characterize, dissect and validate QTL, but the development of NILs is costly. Previous studies have utilized limited numbers of NILs and introgression donors. We characterized a panel of 1270 maize NILs derived from crosses between 18 diverse inbred lines and the recurrent inbred parent B73, referred to as the nested NILs (nNILs). The nNILs were phenotyped for flowering time, height and resistance to three foliar diseases, and genotyped with genotyping‐by‐sequencing. Across traits, broad‐sense heritability (0.4–0.8) was relatively high. The 896 genotyped nNILs contain 2638 introgressions, which span the entire genome with substantial overlap within and among allele donors. GWA with the whole panel identified 29 QTL for height and disease resistance with allelic variation across donors. To date, this is the largest and most diverse publicly available panel of maize NILs to be phenotypically and genotypically characterized. The nNILs are a valuable resource for the maize community, providing an extensive collection of introgressions from the founders of the maize NAM population in a B73 background combined with data on six agronomically important traits and from genotyping‐by‐sequencing. We demonstrate that the nNILs can be used for QTL mapping and allelic testing. The majority of nNILs had four or fewer introgressions, and could readily be used for future fine mapping studies.  相似文献   

15.
Amino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87‐1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker‐based breeding for quality protein maize.  相似文献   

16.
The identification of imprinted genes is becoming a standard procedure in searching for quantitative trait loci (QTL) underlying complex traits. When a developmental characteristic such as growth or drug response is observed at multiple time points, understanding the dynamics of gene function governing the underlying feature should provide more biological information regarding the genetic control of an organism. Recognizing that differential imprinting can be development-specific, mapping imprinted genes considering the dynamic imprinting effect can provide additional biological insights into the epigenetic control of a complex trait. In this study, we proposed a Bayesian imprinted QTL (iQTL) mapping framework considering the dynamics of imprinting effects and model multiple iQTLs with an efficient Bayesian model selection procedure. The method overcomes the limitation of likelihood-based mapping procedure, and can simultaneously identify multiple iQTLs with different gene action modes across the whole genome with high computational efficiency. An inference procedure using Bayes factors to distinguish different imprinting patterns of iQTL was proposed. Monte Carlo simulations were conducted to evaluate the performance of the method. The utility of the approach was illustrated through an analysis of a body weight growth data set in an F(2) family derived from LG/J and SM/J mouse stains. The proposed Bayesian mapping method provides an efficient and computationally feasible framework for genome-wide multiple iQTL inference with complex developmental traits.  相似文献   

17.
To study genetic loci influencing obesity in nuclear families with type 2 diabetes, we performed a genome‐wide screen with 325 microsatellite markers that had an average spacing of 11 cM and a mean heterozygosity of ~75% covering all 22 autosomes. Genotype data were obtained from 562 individuals from 178 families from the Breda Study Cohort. These families were determined to have at least two members with type 2 diabetes. As a measure of obesity, the BMI of each diabetes patient was determined. The genotypes were analyzed using variance components (VCs) analysis implemented in GENEHUNTER 2 to determine quantitative trait loci influencing BMI. The VC analysis revealed two genomic regions showing VC logarithm of odds (LOD) scores ≥1.0 on chromosome 1 and chromosome 11. The regions of interest on both chromosomes were further investigated by fine‐mapping with additional markers, resulting in a VC LOD score of 1.5 on chromosome 1q and a VC LOD of 2.4 on chromosome 11q. The locus on chromosome 1 has been implicated previously in diabetes. The locus on chromosome 11 has been implicated previously in diabetes and obesity. Our study to determine linkage for BMI confirms the presence of quantitative trait loci influencing obesity in subjects with type 2 diabetes on chromosomes 1q31‐q42 and 11q14‐q24.  相似文献   

18.
The capacity to root from cuttings is a key factor for the mass deployment of superior genotypes in clonal forestry. We studied the genetic basis of rooting capacity by mapping quantitative trait loci (QTLs) that control growth rate and form of root traits in a full-sib family of 93 hybrids derived from an interspecific cross between two Populus species, P. deltoides and P. euramericana. The hybrid family was typed for different marker systems (including SSRs, AFLPs, RAPDs, ISSRs, and SNPs), leading to the construction of two linkage maps based on the female P. deltoides (D map) and male P. euramericana (E map) with a pseudotestcross mapping strategy. The two maps were scanned by functional mapping to detect QTLs that control early growth trajectories of two rooting traits, maximal single-root length and the total number of roots per cutting, measured at five time points in water culture. Of the six QTLs detected for these two growth traits, only one is segregating in P. deltoides with poor rooting capacity, while the other five are segregating in P. euramericana showing good rooting capacity. Tests with functional mapping suggest different developmental patterns of the genetic effects of these root QTLs in time course. Five QTLs were detected to change their effects on root growth trajectories with time, whereas one detected to affect root growth consistently in time course. Knowledge about the genetic and developmental control mechanisms of root QTLs will have important implications for the genetic improvement of vegetative propagation traits in Populus.  相似文献   

19.
20.
Drought stress was imposed on two sets of Arabidopsis thaliana genotypes grown in sand under short‐day conditions and analysed for several shoot and root growth traits. The response to drought was assessed for quantitative trait locus (QTL) mapping in a genetically diverse set of Arabidopsis accessions using genome‐wide association (GWA) mapping, and conventional linkage analysis of a recombinant inbred line (RIL) population. Results showed significant genotype by environment interaction (G×E) for all traits in response to different watering regimes. For the RIL population, the observed G×E was reflected in 17 QTL by environment interactions (Q×E), while 17 additional QTLs were mapped not showing Q×E. GWA mapping identified 58 single nucleotide polymorphism (SNPs) associated with loci displaying Q×E and an additional 16 SNPs associated with loci not showing Q×E. Many candidate genes potentially underlying these loci were suggested. The genes for RPS3C and YLS7 were found to contain conserved amino acid differences when comparing Arabidopsis accessions with strongly contrasting drought response phenotypes, further supporting their candidacy. One of these candidate genes co‐located with a QTL mapped in the RIL population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号