首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip‐focused Ca2+‐gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide‐gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip‐focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin‐binding and Ca2+‐permeable channels organize a robust tip‐focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium‐signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.  相似文献   

3.
Polar growth of root hairs is critical for plant survival and requires fine‐tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S‐acyl transferases (PATs), mediating the S‐acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site‐directed mutagenesis and genetic analysis with related root‐hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S‐acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild‐type but not an enzyme‐inactive PAT4. Membrane‐associated ROP2 was significantly reduced in pat4, similar to S‐acylation‐deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4‐mediated S‐acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.  相似文献   

4.
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP‐l ‐rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left‐handed helically twisted petals and roots. It has been proposed that the hyponastic cotyledons observed in rhm1 mutants are a consequence of abnormal flavonol glycosylation, while the root hair defect is flavonol‐independent. We have recently shown that the helical twisting of rhm1 petals results from decreased levels of rhamnose‐containing cell wall polymers. In this study, we found that flavonols indirectly modify the rhm1 helical petal phenotype by altering rhamnose flux to the cell wall. Given this finding, we further investigated the relationship between flavonols and the cell wall in rhm1 cotyledons. We show that decreased flavonol rhamnosylation is not responsible for the cotyledon phenotype of rhm1 mutants. Instead, blocking flavonol synthesis or rhamnosylation can suppress rhm1 defects by diverting UDP‐l ‐rhamnose to the synthesis of cell wall polysaccharides. Therefore, rhamnose is required in the cell wall for normal expansion of cotyledon epidermal cells. Our findings suggest a broad role for rhamnose‐containing cell wall polysaccharides in the morphogenesis of epidermal cells.  相似文献   

5.
Phosphate (Pi) deficiency induces a multitude of responses aimed at improving the acquisition of Pi, including an increased density of root hairs. To understand the mechanisms involved in Pi deficiency-induced alterations of the root hair phenotype in Arabidopsis (Arabidopsis thaliana), we analyzed the patterning and length of root epidermal cells under control and Pi-deficient conditions in wild-type plants and in four mutants defective in the expression of master regulators of cell fate, CAPRICE (CPC), ENHANCER OF TRY AND CPC 1 (ETC1), WEREWOLF (WER) and SCRAMBLED (SCM). From this analysis we deduced that the longitudinal cell length of root epidermal cells is dependent on the correct perception of a positional signal (‘cortical bias’) in both control and Pi-deficient plants; mutants defective in the receptor of the signal, SCM, produced short cells characteristic of root hair-forming cells (trichoblasts). Simulating the effect of cortical bias on the time-evolving probability of cell fate supports a scenario in which a compromised positional signal delays the time point at which non-hair cells opt out the default trichoblast pathway, resulting in short, trichoblast-like non-hair cells. Collectively, our data show that Pi-deficient plants increase root hair density by the formation of shorter cells, resulting in a higher frequency of hairs per unit root length, and additional trichoblast cell fate assignment via increased expression of ETC1.  相似文献   

6.
Patterned differentiation of distinct cell types is essential for the development of multicellular organisms. The root epidermis of Arabidopsis thaliana is composed of alternating files of root hair and non‐hair cells and represents a model system for studying the control of cell‐fate acquisition. Epidermal cell fate is regulated by a network of genes that translate positional information from the underlying cortical cell layer into a specific pattern of differentiated cells. While much is known about the genes of this network, new players continue to be discovered. Here we show that the SABRE (SAB) gene, known to mediate microtubule organization, anisotropic cell growth and planar polarity, has an effect on root epidermal hair cell patterning. Loss of SAB function results in ectopic root hair formation and destabilizes the expression of cell fate and differentiation markers in the root epidermis, including expression of the WEREWOLF (WER) and GLABRA2 (GL2) genes. Double mutant analysis reveal that wer and caprice (cpc) mutants, defective in core components of the epidermal patterning pathway, genetically interact with sab. This suggests that SAB may act on epidermal patterning upstream of WER and CPC. Hence, we provide evidence for a role of SAB in root epidermal patterning by affecting cell‐fate stabilization. Our work opens the door for future studies addressing SAB‐dependent functions of the cytoskeleton during root epidermal patterning.  相似文献   

7.
Root hairs elongate in a highly polarized manner known as tip growth. Overexpression of constitutively active Rho of Plant (ROP)/RAC GTPases mutants induces swelling of root hairs. Here, we demonstrate that Atrop11CA‐induced swelling of root hairs depends on the composition of the growth medium. Depletion of ammonium allowed normal root hair elongation in Atrop11CA plants, induced the development of longer root hairs in wild‐type plants and suppressed the effect of Atrop11CA expression on actin organization and reactive oxygen species distribution, whereas membrane localization of the protein was not affected. Ammonium at concentrations higher than 1 mM and the presence of nitrate were required for induction of swelling. Oscillations in wall and cytoplasmic pH are known to accompany tip growth in root hairs, and buffering of the growth medium decreased Atrop11CA‐induced swelling. Fluorescence ratio imaging experiments revealed that in wild‐type root hairs, the addition of NH4NO3 to the growth medium induced an increase in the amplitude of extracellular and intracellular pH oscillations and an overall decrease in cytoplasmic pH at the cell apex. Based on these results, we suggest a model in which ROP GTPases and nitrogen‐dependent pH oscillations function in parallel pathways, creating a positive feedback loop during root hair growth.  相似文献   

8.
9.
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map‐based cloning revealed that the rth5 gene encodes a monocot‐specific NADPH oxidase. RNA‐Seq, in situ hybridization and qRT‐PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild‐type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA‐Seq analysis of 6‐day‐old rth5 versus wild‐type primary roots revealed significant over‐representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups ‘response to oxidative stress’ and ‘cellulose biosynthesis’ were most prominently represented.  相似文献   

10.
11.
12.
Low phosphorus availability stimulates root hair elongation in many plants, which may have adaptive significance in soil phosphorus acquisition. We investigated the effect of low phosphorus on the elongation of Arabidopsis thaliana root hairs. Arabidopsis thaliana plants were grown in plant culture containing high (1000 mmol m?3) or low (1 mmol m?3) phosphorus concentrations, and root hair elongation was analysed by image analysis. After 15d of growth, low-phosphorus plants developed root hairs averaging 0.9 mm in length while high-phosphorus plants of the same age developed root hairs averaging 0.3 mm in length. Increased root hair length in low-phosphorus plants was a result of both increased growth duration and increased growth rate. Root hair length decreased logarithmically in response to increasing phosphorus concentration. Local changes in phosphorus availability influenced root hair growth regardless of the phosphorus status of the plant. Low phosphorus stimulated root hair elongation in the hairless axr2 mutant, exogenously applied IAA stimulated root hair elongation in wild-type high-phosphorus plants and the auxin antagonist CM PA inhibited root hair elongation in low-phosphorus plants. These results indicate that auxin may be involved in the low-phosphorus response in root hairs.  相似文献   

13.
Root hair development is controlled by environmental signals. Studies on root hair plasticity in Arabidopsis thaliana have mainly focused on phosphate and iron deficiency. Root hair growth and development and their physiological role in response to salt stress are largely unknown. Here, we show that root epidermal cell types and root hair development are highly regulated by salt stress. Root hair length and density decreased significantly in a dose-dependent manner on both primary roots and junction sites between roots and shoots. The root hair growth and development were sensitive to inhibition by ions but not to osmotic stress. High salinity also alters anatomical structure of roots, leading to a decrease in cell number in N positions and enlargement of the cells. Moreover, analysis of the salt overly sensitive mutants indicated that salt-induced root hair response is caused by ion disequilibrium and appears to be an adaptive mechanism that reduces excessive ion uptake. Finally, we show that genes WER, GL3, EGL3, CPC, and GL2 might be involved in cell specification of root epidermis in stressed plants. Taken together, data suggests that salt-induced root hair plasticity represents a coordinated strategy for early stress avoidance and tolerance as well as a morphological sign of stress adaptation.  相似文献   

14.
15.
16.
The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch‐clamp experiments on root hair protoplasts, besides the Shaker‐type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+‐permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock‐out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod‐factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.  相似文献   

17.
Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non‐infected wild‐type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid‐ and jasmonic acid‐dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen‐induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.  相似文献   

18.
In Arabidopsis thaliana, R3-type MYB genes, CAPRICE (CPC) and its family of genes including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ETC2 and CPC-LIKE MYB3 cooperatively regulate epidermal cell differentiation. Root hair formation is greatly reduced by a mutation in CPC, and try and etc1 enhance this phenotype. In this study, we demonstrate that CPC, TRY and ETC1 are also involved in root hair formation at the root-hypocotyl junction. The cpc try and cpc etc1 double mutants showed a reduced number of root hairs in that area. Additionally, the expression of ETC1::GUS was higher near this area. These results suggest that CPC family of genes also cooperatively regulates root hair formation at the root-hypocotyl junction in unique ways.  相似文献   

19.
20.
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin‐deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole‐3‐pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole‐3‐acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin‐containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4‐biphenylboronic acid (BBo) and 4‐phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild‐type Arabidopsis seedlings. Co‐treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nm , respectively. In addition, PPBo did not interfere with the auxin response of auxin‐marker genes when it was co‐treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号