首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER‐LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double‐stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S‐driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild‐type plants. Nonetheless, in a dcl4 mutant compromised in phloem‐originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem‐originating silencing is dependent on the activity of RNA‐DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.  相似文献   

2.
Phased, small interfering RNAs (phasiRNAs) are important for plant anther development, especially for male sterility. PhasiRNA biogenesis is dependent on genes like RNA polymerase 6 (RDR6), DICER-LIKE 4 (DCL4), or DCL5 to produce 21- or 24 nucleotide (nt) double-strand small RNAs. Here, we generated mutants of DCL4, DCL5 and RDR6 using CRISPR/Cas9 system and studied their effects on plant reproductive development and phasiRNA production in wheat. We found that RDR6 mutation caused sever consequence throughout plant development starting from seed germination and the dcl4 mutants grew weaker with thorough male sterility, while dcl5 plants developed normally but exhibited male sterility. Correspondingly, DCL4 and DCL5, respectively, specified 21- and 24-nt phasiRNA biogenesis, while RDR6 contributed to both. Also, the three key genes evolved differently in wheat, with TaDCL5-A/B becoming non-functioning and TaRDR6-A being lost after polyploidization. Furthermore, we found that PHAS genes (phasiRNA precursors) identified via phasiRNAs diverged rapidly among sub-genomes of polyploid wheat. Despite no similarity being found among phasiRNAs of grasses, their targets were enriched for similar biological functions. In light of the important roles of phasiRNA pathways in gametophyte development, genetic dissection of the function of key genes may help generate male sterile lines suitable for hybrid wheat breeding.  相似文献   

3.
4.
In the model plant Arabidopsis thaliana, four Dicer‐like proteins (DCL1–4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII‐like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4‐dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4‐dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold‐back double‐stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR‐dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.  相似文献   

5.
6.
7.
Cross‐protection has been used successfully and commercially to control a range of virus diseases for which the selection of suitable mild strains of plant viruses is necessary. Turnip crinkle virus (TCV) is highly pathogenic on Arabidopsis plants and its silencing suppressor‐defective mutant, TCVΔCP, can induce highly localized RNA silencing which is differs from that of other protective strains. We found that TCVΔCP provides some protection against wild‐type TCV but lacks complete protection, and the relative locations of the protective virus and challenge virus affect the degree of cross‐protection. However, similar cross‐protection afforded by TCVΔCP is not observed in Nicotiana benthamiana plants. As expected, TCVΔCP pre‐infected Arabidopsis plants fail to protect against infection with the unrelated Cucumber mosaic virus, strain Fhy. It appears that cross‐protection afforded by TCVΔCP requires that the challenge virus be very similar in sequence, which is a characteristic of RNA silencing. In order to investigate whether the protection is associated with the highly localized RNA silencing, mutant plants involved in key silencing pathway genes of RNA silencing machinery, including dcl2, dcl4 and triple dcl2/dcl3/dcl4 mutants were used. The results demonstrate that cross‐protection afforded by TCVΔCP is dependent on host RNA silencing, and both DCL2 and DCL4 play important roles in this process.  相似文献   

8.
9.
Arabidopsis encodes four DICER-like (DCL) proteins. DCL1 produces miRNAs, DCL2 produces some virus-derived siRNAs, and DCL3 produces endogenous RDR2-dependent siRNAs, but the role of DCL4 is unknown. We show that DCL4 is the primary processor of endogenous RDR6-dependent trans-acting siRNAs (tasiRNAs). Molecular and phenotypic analyses of all dcl double mutants also revealed partially compensatory functions among DCL proteins. In the absence of DCL4, some RDR6-dependent siRNAs were produced by DCL2 and DCL3, and in the absence of DCL3, some RDR2-dependent siRNAs were produced by DCL2 and DCL4. Consistent with partial redundancies, dcl2 and dcl3 mutants developed normally, whereas dcl4 and dcl3 dcl4 mutants had weak and severe rdr6 phenotypes, respectively, and increased tasiRNA target mRNA accumulation. After three generations, dcl3 dcl4 and dcl2 dcl3 mutants exhibited stochastic developmental phenotypes, some of which were lethal, likely owing to the accumulated loss of heterochromatic siRNA-directed marks. dcl1 dcl3 and dcl1 dcl4, but not dcl1 dcl2 mutants, had phenotypes more severe than dcl1 mutants, consistent with DCL1, DCL3, and DCL4 acting as the primary processors of the three respective classes of endogenous silencing RNAs and DCL2 acting to produce viral-derived siRNAs and as an alternative DCL for endogenous siRNA production.  相似文献   

10.
11.
12.
13.
Arabidopsis thaliana encodes four Dicer-like (DCL) proteins and five dsRNA-binding (DRB) proteins. We have previously demonstrated that DCL4 specifically interacts with DRB4 in vitro. Here we describe the interaction between DCL4 and DRB4 in vivo. The phenotype of a mutant with a defect in DCL4 (dcl4-2) was similar to that of a mutant with a defect in DRB4 (drb4-1): both mutant plants had elongated and downwardly curled rosette leaves and over-accumulated anthocyanin. In immunoprecipitation experiments with either anti-DCL4 or anti-DRB4 antibody and crude extracts of wild-type Arabidopsis plants, co-immunoprecipitation of DCL4 and DRB4 was detected, indicating that DCL4 interacts with DRB4 in vivo. This interaction was confirmed by immunoprecipitation experiments using extracts from dcl4-2, drb4-1, or transgenic plants expressing the hemagglutinin-tagged version of DCL4 or DRB4. The results of immunoprecipitation experiments also suggest that most DCL4 is associated with DRB4, but that some DRB4 is free or associated with other proteins. Reduced accumulation of the TAS1 and TAS3 trans-acting siRNA (ta-siRNA) and over accumulation of their target mRNAs (At5g18040 and auxin response factors ARF3 and ARF4) were detected in both drb4-1 and dcl4-2 mutants. These results indicate that DRB4, together with DCL4, functions in the ta-siRNA biogenesis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Yukihiro Nakazawa and Akihiro Hiraguri contributed equally to this work.  相似文献   

14.
15.
16.
17.
Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline‐tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus‐based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non‐silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV‐infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates.  相似文献   

18.
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER‐LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive‐strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA‐binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV‐derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号