首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylglycerol (PG) is an indispensable lipid constituent of photosynthetic membranes, whose function is essential in photosynthetic activity. In higher plants, the biological function of the last step of PG biosynthesis remains elusive because an enzyme catalyzing this reaction step, namely phosphatidylglycerophosphate phosphatase (PGPP), has been a missing piece in the entire glycerolipid metabolic map. Here, we report the identification and characterization of AtPGPP1 encoding a PGPP in Arabidopsis thaliana. Heterologous expression of AtPGPP1 in yeast Δgep4 complemented growth phenotype and PG‐producing activity, suggesting that AtPGPP1 encodes a functional PGPP. The GUS reporter assay showed that AtPGPP1 was preferentially expressed in hypocotyl, vasculatures, trichomes, guard cells, and stigmas. A subcellular localization study with GFP reporter indicated that AtPGPP1 is mainly localized at chloroplasts. A T‐DNA‐tagged knockout mutant of AtPGPP1, designated pgpp1‐1, showed pale green phenotype with reduced PG and chlorophyll contents but no defect in embryo development. In the pgpp1‐1 mutant, ultrastructure of plastids indicated defective development of chloroplasts and measurement of photosynthetic parameters showed impaired photosynthetic activity. These results suggest that AtPGPP1 is a primary plastidic PGPP required for PG biosynthesis and photosynthetic function in Arabidopsis.  相似文献   

2.
Wu F  Yang Z  Kuang T 《Plant physiology》2006,141(4):1274-1283
Phosphatidylglycerol (PG) is a ubiquitous phospholipid in thylakoid membranes of cyanobacteria and chloroplasts and plays an important role in the structure and function of photosynthetic membranes. The last step of the PG biosynthesis is dephosphorylation of phosphatidylglycerophosphate (PGP) catalyzed by PGP phosphatase. However, the gene-encoding PGP phosphatase has not been identified and cloned from cyanobacteria or higher plants. In this study, we constructed a PG-deficient mutant from cyanobacterium Anabaena sp. PCC7120 with a disrupted gene (alr1715, a gene for Alr1715 protein, GenBank accession no. BAB78081) encoding a putative PGP phosphatase. The obtained mutant showed an approximately 30% reduction in the cellular content of PG. Following the reduction in the PG content, the photoautotrophical growth of the mutant was restrained, and the cellular content of chlorophyll was decreased. The decreases in net photosynthetic and photosystem II (PSII) activities on a cell basis also occurred in this mutant. Simultaneously, the photochemical efficiency of PSII was considerably declined, and less excitation energy was transferred toward PSII. These findings demonstrate that the alr1715 gene of Anabaena sp. PCC7120 is involved in the biosynthesis of PG and essential for photosynthesis.  相似文献   

3.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

4.
The chloroplast is the chlorophyll‐containing organelle that produces energy through photosynthesis. Within the chloroplast is an intricate network of thylakoid membranes containing photosynthetic membrane proteins that mediate electron transport and generate chemical energy. Historically, electron microscopy (EM) has been a powerful tool for visualizing the macromolecular structure and organization of thylakoid membranes. However, an understanding of thylakoid membrane dynamics remains elusive because EM requires fixation and sectioning. To improve our knowledge of thylakoid membrane dynamics we need to consider at least two issues: (i) the live‐cell imaging conditions needed to visualize active processes in vivo; and (ii) the spatial resolution required to differentiate the characteristics of thylakoid membranes. Here, we utilize three‐dimensional structured illumination microscopy (3D‐SIM) to explore the optimal imaging conditions for investigating the dynamics of thylakoid membranes in living plant and algal cells. We show that 3D‐SIM is capable of examining broad characteristics of thylakoid structures in chloroplasts of the vascular plant Arabidopsis thaliana and distinguishing the structural differences between wild‐type and mutant strains. Using 3D‐SIM, we also visualize thylakoid organization in whole cells of the green alga Chlamydomonas reinhardtii. These data reveal that high light intensity changes thylakoid membrane structure in C. reinhardtii. Moreover, we observed the green alga Chromochloris zofingiensis and the moss Physcomitrella patens to show the applicability of 3D‐SIM. This study demonstrates that 3D‐SIM is a promising approach for studying the dynamics of thylakoid membranes in photoautotrophic organisms during photoacclimation processes.  相似文献   

5.
Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.  相似文献   

6.
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid‐associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild‐type levels of 16:1t. The FAD4–PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co‐production of PRXQ with FAD4 was required to produce Δ3‐desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site‐directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.  相似文献   

7.
A mutant of Arabidopsis thaliana with reduced content of C18:3 and C16:3 fatty acids in membrane lipids exhibited a 45% reduction in the cross-sectional area of chloroplasts and had a decrease of similar magnitude in the amount of chloroplast lamellar membranes. The reduction in chloroplast size was partially compensated by a 45% increase in the number of chloroplasts per cell in the mutant. When expressed on a chlorophyll basis the rates of CO2-fixation and photosynthetic electron transport were not affected by these changes. Fluorescence polarization measurements indicated that the fluidity of the thylakoid membranes was not significantly altered by the mutation. Similarly, on the basis of temperature-induced fluorescence yield enhancement measurements, there was no significant effect on the thermal stability of chlorophyll-protein complexes in the mutant. These observations suggest that the high content of trienoic fatty acids in chloroplast lipids may be an important factor regulating organelle biogenesis but is not required to support normal levels of the photosynthetic activities associated with the thylakoid membranes.  相似文献   

8.
Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol‐disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N‐terminal targeting signal, which is removed in the lumen by a membrane‐bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at ?3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non‐reducing conditions than under reducing conditions on SDS‐PAGE. These results underpin the notion that Plsp1 is a redox‐dependent signal peptidase in the thylakoid lumen.  相似文献   

9.
Most proteins found in the thylakoid lumen are synthesized in the cytosol with an N–terminal extension consisting of transient signals for chloroplast import and thylakoid transfer in tandem. The thylakoid‐transfer signal is required for protein sorting from the stroma to thylakoids, mainly via the cpSEC or cpTAT pathway, and is removed by the thylakoidal processing peptidase in the lumen. An Arabidopsis mutant lacking one of the thylakoidal processing peptidase homologs, Plsp1, contains plastids with anomalous thylakoids and is seedling‐lethal. Furthermore, the mutant plastids accumulate two cpSEC substrates (PsbO and PetE) and one cpTAT substrate (PsbP) as intermediate forms. These properties of plsp1‐null plastids suggest that complete maturation of lumenal proteins is a critical step for proper thylakoid assembly. Here we tested the effects of inhibition of thylakoid‐transfer signal removal on protein targeting and accumulation by examining the localization of non‐mature lumenal proteins in the Arabidopsis plsp1‐null mutant and performing a protein import assay using pea chloroplasts. In plsp1‐null plastids, the two cpSEC substrates were shown to be tightly associated with the membrane, while non‐mature PsbP was found in the stroma. The import assay revealed that inhibition of thylakoid‐transfer signal removal did not disrupt cpSEC‐ and cpTAT‐dependent translocation, but prevented release of proteins from the membrane. Interestingly, non‐mature PetE2 was quickly degraded under light, and unprocessed PsbO1 and PsbP1 were found in a 440‐kDa complex and as a monomer, respectively. These results indicate that the cpTAT pathway may be disrupted in the plsp1‐null mutant, and that there are multiple mechanisms to control unprocessed lumenal proteins in thylakoids.  相似文献   

10.
The presence of two glycolytic pathways working in parallel in plastids and cytosol has complicated the understanding of this essential process in plant cells, especially the integration of the plastidial pathway into the metabolism of heterotrophic and autotrophic organs. It is assumed that this integration is achieved by transport systems, which exchange glycolytic intermediates across plastidial membranes. However, it is unknown whether plastidial and cytosolic pools of 3‐phosphoglycerate (3‐PGA) can equilibrate in non‐photosynthetic tissues. To resolve this question, we employed Arabidopsis mutants of the plastidial glycolytic isoforms of glyceraldehyde‐3‐phosphate dehydrogenase (GAPCp) that express the triose phosphate translocator (TPT) under the control of the 35S (35S:TPT) or the native GAPCp1 (GAPCp1:TPT) promoters. TPT expression under the control of both promoters complemented the vegetative developmental defects and metabolic disorders of the GAPCp double mutants (gapcp1gapcp2). However, as the 35S is poorly expressed in the tapetum, full vegetative and reproductive complementation of gapcp1gapcp2 was achieved only by transforming this mutant with the GAPCp1:TPT construct. Our results indicate that the main function of GAPCp is to supply 3‐PGA for anabolic pathways in plastids of heterotrophic cells and suggest that the plastidial glycolysis may contribute to fatty acid biosynthesis in seeds. They also suggest a 3‐PGA deficiency in the plastids of gapcp1gapcp2, and that 3‐PGA pools between cytosol and plastid do not equilibrate in heterotrophic cells.  相似文献   

11.
《FEBS letters》2014,588(9):1680-1685
Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria.  相似文献   

12.
Methionine (Met) in proteins can be oxidized to two diastereoisomers of methionine sulfoxide, Met‐S‐O and Met‐R‐O, which are reduced back to Met by two types of methionine sulfoxide reductases (MSRs), A and B, respectively. MSRs are generally supplied with reducing power by thioredoxins. Plants are characterized by a large number of thioredoxin isoforms, but those providing electrons to MSRs in vivo are not known. Three MSR isoforms, MSRA4, MSRB1 and MSRB2, are present in Arabidopsis thaliana chloroplasts. Under conditions of high light and long photoperiod, plants knockdown for each plastidial MSR type or for both display reduced growth. In contrast, overexpression of plastidial MSRBs is not associated with beneficial effects in terms of growth under high light. To identify the physiological reductants for plastidial MSRs, we analyzed a series of mutants deficient for thioredoxins f, m, x or y. We show that mutant lines lacking both thioredoxins y1 and y2 or only thioredoxin y2 specifically display a significantly reduced leaf MSR capacity (–25%) and growth characteristics under high light, related to those of plants lacking plastidial MSRs. We propose that thioredoxin y2 plays a physiological function in protein repair mechanisms as an electron donor to plastidial MSRs in photosynthetic organs.  相似文献   

13.
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix‐assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single‐cell resolution. Here we applied 5‐ and 10 μm high spatial resolution MALDI‐MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell‐specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1‐containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0‐containing PGs. Furthermore, PG 32:0 shows genotype‐specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. This study demonstrates the power of MALDI‐MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single‐cell resolution.  相似文献   

14.
Phosphatidylglycerol (PG) is an indispensable lipid class in photosynthetic activity. However, the importance of PG biosynthesis in non-photosynthetic organs remains elusive. We previously identified phosphatidylglycerophosphate phosphatase 1 (PGPP1), which catalyzes the last step of PG biosynthesis in Arabidopsis thaliana. In the present report, we noted considerably shorter roots of the pgpp1-1 mutant compared to the wild type. We observed defective order of columella cells in the root apices, which was complemented by introducing the wild-type PGPP1 gene. Although PGPP1 is chloroplast-localized in leaf mesophyll cells, we observed mitochondrial localization of PGPP1 in root cells, suggesting possible dual targeting of PGPP1. Moreover, we identified previously uncharacterized 2 protein tyrosine phosphatase-like proteins as functional PGPPs. These proteins, designated PTPMT1 and PTPMT2, complemented growth and lipid phenotypes of Δgep4, a Saccharomyces cerevisiae mutant of PGPP. The ptpmt1-1 ptpmt2-1 exhibited no visible phenotype; however, the pgpp1-1 ptpmt1-1 ptpmt2-1 significantly enhanced the root phenotype of pgpp1-1 without further affecting the photosynthesis, suggesting that these newly found PGPPs are involved in the root phenotype. Radiolabeling experiment of mutant roots showed that decreased PG biosynthesis is associated with the mutation of PGPP1. These results suggest that PG biosynthesis is required for the root growth.  相似文献   

15.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

16.
Methionine oxidation to methionine sulfoxide (MetSO) is reversed by two types of methionine sulfoxide reductases (MSRs), A and B, specific to MetSO S‐ and R‐diastereomers, respectively. Two MSRB isoforms, MSRB1 and MSRB2, are present in chloroplasts of Arabidopsis thaliana. To assess their physiological role, we characterized Arabidopsis mutants knockout for the expression of MSRB1, MSRB2 or both genes. Measurements of MSR activity in leaf extracts revealed that the two plastidial MSRB enzymes account for the major part of leaf peptide MSR capacity. Under standard conditions of light and temperature, plants lacking one or both plastidial MSRBs do not exhibit any phenotype, regarding growth and development. In contrast, we observed that the concomitant absence of both proteins results in a reduced growth for plants cultivated under high light or low temperature. In contrast, double mutant lines restored for MSRB2 expression display no phenotype. Under environmental constraints, the MetSO level in leaf proteins is higher in plants lacking both plastidial MSRBs than in Wt plants. The absence of plastidial MSRBs is associated with an increased chlorophyll a/b ratio, a reduced content of Lhca1 and Lhcb1 proteins and an impaired photosynthetic performance. Finally, we show that MSRBs are able to use as substrates, oxidized cpSRP43 and cpSRP54, the two main components involved in the targeting of Lhc proteins to the thylakoids. We propose that plastidial MSRBs fulfil an essential function in maintaining vegetative growth of plants during environmental constraints, through a role in the preservation of photosynthetic antennae.  相似文献   

17.
Phosphatidylglycerol (PG) in thylakoid membrane is essential for growth and photosynthesis of photosynthetic organisms. Although the sn-2 position of PG in thylakoid membrane is exclusively esterified with C16 fatty acids, the functional importance of the C16 fatty-acyl chains at the sn-2 position has not been clarified. In this study, we chemically synthesized non-metabolizable PG molecules: we introduced linoleic acid (18:2, fatty acid containing 18 carbons with 2 double bonds) and one of the saturated fatty acids with different chain length (12:0, 14:0, 16:0, 18:0 and 20:0) by ether linkage to the sn-1 and sn-2 positions, respectively. With the synthesized ether-linked PG molecules, we checked whether they could complement the growth and photosynthesis of pgsA mutant cells of Synechocystis sp. PCC 6803 to understand the importance of length of fatty chains at the sn-2 position of PG. The pgsA mutant is incapable of synthesizing PG, so it requires exogenous PG added to medium for growth. The growth rate and photosynthetic activity of mutant cells depended on the length of fatty chains: the PG molecular species binding 16:0 most effectively complemented the growth and photosynthesis of mutant cells, and other PG molecular species with fatty chains shorter or longer than 16:0 were less effective; especially, those binding 12:0 inhibited the growth and photosynthetic activity of the mutant cells. These data demonstrate that length of fatty chains bound to the sn-2 position of PG is critical for PG performance in growth and photosynthesis.  相似文献   

18.
A mutant of Arabidopsis thaliana, deficient in activity of the chloroplast n-6 desaturase, accumulated high levels of C16:1 and C18:1 lipids and had correspondingly reduced levels of polyunsaturated lipids. The altered lipid composition of the mutant had pronounced effects on chloroplast ultrastructure, thylakoid membrane protein and chlorophyll content, electron transport rates, and the thermal stability of the photosynthetic membranes. The change in chloroplast ultrastructure was due to a 48% decrease in the amount of appressed membranes that was not compensated for by an increased amount of nonappressed membrane. This resulted in a net loss of 36% of the thylakoid membrane per chloroplast and a corresponding reduction in chlorophyll and protein content. Electrophoretic analysis of the chlorophyll-protein complexes further revealed a small decrease in the amount of light-harvesting complex. Relative levels of whole chain and protosystem II electron transport rates were also reduced in the mutant. In addition, the mutation resulted in enhanced thermal stability of photosynthetic electron transport. These observations suggest a central role of polyunsaturated lipids in determining chloroplast structure and maintaining normal photosynthetic function and demonstrate that lipid unsaturation directly affects the thermal stability of photosynthetic membranes.  相似文献   

19.
  • The EGY3 protein is a homologue of site‐2 proteases, which are intramembrane zinc metalloproteases. EGY3 itself lacks proteolytic activity due to the absence of a zinc‐binding motif. Plentiful evidence indicates that such intramembrane ‘pseudoproteases’ play significant roles in many diverse processes occurring within the cell. However, the physiological functions of EGY3, as well as its subcellular localization, remain unknown.
  • The subcellular localization of EGY3 protein was investigated using Arabidopsis thaliana protoplasts transformed with EGY3‐GFP fusion protein, and immunoblot experiments using the total leaf protein extract, as well as highly purified chloroplasts and fractions of stroma, envelope and thylakoid membrane proteins. The physiological role of EGY3 was studied using two A. thaliana mutant lines devoid of EGY3 protein. Chlorophyll a fluorescence measurement was performed and the egy3 mutant sensitivity to photoinhibition was investigated. Additionally, the abundance of thylakoid membrane complexes was established using blue native gel electrophoresis.
  • We present experimental evidence for thylakoid membrane localization of the EGY3 protein.
  • We show that egy3 mutants display increased value of the non‐photochemical quenching parameter and significantly slower recovery rate after photoinhibitory treatment. This was associated with a decrease in the level of proteases involved in photosystem II recovery, Deg1 and FtsH2/8.
  相似文献   

20.
The Vipp1 protein is essential in cyanobacteria and chloroplasts for the maintenance of photosynthetic function and thylakoid membrane architecture. To investigate its mode of action we generated strains of the cyanobacteria Synechocystis sp. PCC6803 and Synechococcus sp. PCC7942 in which Vipp1 was tagged with green fluorescent protein at the C‐terminus and expressed from the native chromosomal locus. There was little perturbation of function. Live‐cell fluorescence imaging shows dramatic relocalisation of Vipp1 under high light. Under low light, Vipp1 is predominantly dispersed in the cytoplasm with occasional concentrations at the outer periphery of the thylakoid membranes. High light induces Vipp1 coalescence into localised puncta within minutes, with net relocation of Vipp1 to the vicinity of the cytoplasmic membrane and the thylakoid membranes. Pull‐downs and mass spectrometry identify an extensive collection of proteins that are directly or indirectly associated with Vipp1 only after high‐light exposure. These include not only photosynthetic and stress‐related proteins but also RNA‐processing, translation and protein assembly factors. This suggests that the Vipp1 puncta could be involved in protein assembly. One possibility is that Vipp1 is involved in the formation of stress‐induced localised protein assembly centres, enabling enhanced protein synthesis and delivery to membranes under stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号