首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Caspase-8 is a member of the cysteine proteases, which are implicated in apoptosis and cytokine processing. Like all caspases, caspase-8 is synthesized as an inactive single polypeptide chain zymogen procaspase and is activated by proteolytic cleavage, through either autoactivation after recruitment into a multimeric complex or trans-cleavage by other caspases. Thus, ligand binding-induced trimerization of death receptors results in recruitment of the receptor-specific adapter protein Fas-associated death domain (FADD), which then recruits caspase-8. Activated caspase-8 is known to propagate the apoptotic signal either by directly cleaving and activating downstream caspases or by cleaving the BH3 Bcl2-interacting protein, which leads to the release of cytochrome c from mitochondria, triggering activation of caspase-9 in a complex with dATP and Apaf-1. Activated caspase-9 then activates further "downstream caspases," including caspase-8. Knockout data indicate that caspase-8 is required for killing induced by the death receptors Fas, tumor necrosis factor receptor 1, and death receptor 3. Moreover, caspase-8-/- mice die in utero as a result of defective development of heart muscle and display fewer hematopoietic progenitor cells, suggesting that the FADD/caspase-8 pathway is absolutely required for growth and development of specific cell types.  相似文献   

3.
Ab binding to CD20 has been shown to induce apoptosis in B cells. In this study, we demonstrate that rituximab sensitizes lymphoma B cells to Fas-induced apoptosis in a caspase-8-dependent manner. To elucidate the mechanism by which Rituximab affects Fas-mediated cell death, we investigated rituximab-induced signaling and apoptosis pathways. Rituximab-induced apoptosis involved the death receptor pathway and proceeded in a caspase-8-dependent manner. Ectopic overexpression of FLIP (the physiological inhibitor of the death receptor pathway) or application of zIETD-fmk (specific inhibitor of caspase-8, the initiator-caspase of the death receptor pathway) both specifically reduced rituximab-induced apoptosis in Ramos B cells. Blocking the death receptor ligands Fas ligand or TRAIL, using neutralizing Abs, did not inhibit apoptosis, implying that a direct death receptor/ligand interaction is not involved in CD20-mediated cell death. Instead, we hypothesized that rituximab-induced apoptosis involves membrane clustering of Fas molecules that leads to formation of the death-inducing signaling complex (DISC) and downstream activation of the death receptor pathway. Indeed, Fas coimmune precipitation experiments showed that, upon CD20-cross-linking, Fas-associated death domain protein (FADD) and caspase-8 were recruited into the DISC. Additionally, rituximab induced CD20 and Fas translocation to raft-like domains on the cell surface. Further analysis revealed that, upon stimulation with rituximab, Fas, caspase-8, and FADD were found in sucrose-gradient raft fractions together with CD20. In conclusion, in this study, we present evidence for the involvement of the death receptor pathway in rituximab-induced apoptosis of Ramos B cells with concomitant sensitization of these cells to Fas-mediated apoptosis via Fas multimerization and recruitment of caspase-8 and FADD to the DISC.  相似文献   

4.
Activation of protein kinase C (PKC) triggers cellular signals that inhibit Fas/CD95-induced cell death in Jurkat T-cells by poorly defined mechanisms. Previously, we have shown that one effect of PKC on Fas/CD95-dependent cell death occurs through inhibition of cell shrinkage and K(+) efflux (Gómez-Angelats, M., Bortner, C. D., and Cidlowski, J. A. (2000) J. Biol. Chem. 275, 19609-19619). Here we report that PKC alters Fas/CD95 signaling from the plasma membrane to the activation of caspases by exerting a profound action on survival/cell death decisions. Specific activation of PKC with 12-O-tetradecanoylphorbol-13-acetate or bryostatin-1 induced translocation of PKC from the cytosol to the membrane and effectively inhibited cell shrinkage and cell death triggered by anti-Fas antibody in Jurkat cells. In contrast, inhibition of classical PKC isotypes with G?6976 exacerbated the effect of Fas activation on both apoptotic volume decrease and cell death. PKC activation/inhibition did not affect anti-Fas antibody binding to the cell surface, intracellular levels of FADD (Fas-associated protein with death domain), or c-FLIP (cellular FLICE-like inhibitory protein) expression. However, processing/activation of both caspase-8 and caspase-3 and BID cleavage were markedly blocked upon PKC activation and, conversely, were augmented during PKC inhibition, suggesting a role for PKC upstream of caspase-8 processing and activation. Analysis of death-inducing signaling complex (DISC) formation was carried out to examine the influence of PKC on recruitment of both FADD and procaspase-8 to the Fas receptor. PKC activation blocked FADD recruitment and caspase-8 activation and thus DISC formation in both type I and II cells. In contrast, inhibition of classical PKCs promoted the opposite effect on the Fas pathway by rapidly increasing FADD recruitment, caspase-8 activation, and DISC formation. Together, these data show that PKC finely modulates Fas/CD95 signaling by altering the efficiency of DISC formation.  相似文献   

5.
Fas, a member of the tumor necrosis factor receptor family, can upon ligation by its ligand or agonistic antibodies trigger signaling cascades leading to cell death in lymphocytes and other cell types. Such signaling cascades are initiated through the formation of a membrane death-inducing signaling complex (DISC) that includes Fas, the Fas-associated death domain protein (FADD) and caspase-8. We report here that a considerable fraction of Fas is constitutively partitioned into sphingolipid- and cholesterol-rich membrane rafts in mouse thymocytes as well as the L12.10-Fas T cells, and Fas ligation promotes a rapid and specific recruitment of FADD and caspase-8 to the rafts. Raft disruption by cholesterol depletion abolishes Fas-triggered recruitment of FADD and caspase-8 to the membrane, DISC formation and cell death. Taken together, our results provide the first demonstration for an essential role of membrane rafts in the initiation of Fas-mediated cell death signaling.  相似文献   

6.
Fas (CD95, APO-1, TNFRSF6) is a TNF receptor superfamily member that directly triggers apoptosis and contributes to the maintenance of lymphocyte homeostasis and prevention of autoimmunity. Although FADD and caspase-8 have been identified as key intracellular mediators of Fas signaling, it is not clear how recruitment of these proteins to the Fas death domain leads to activation of caspase-8 in the receptor signaling complex. We have used high-resolution confocal microscopy and live cell imaging to study the sequelae of early events in Fas signaling. These studies have revealed a new stage of Fas signaling in which receptor ligation leads to the formation of surface receptor oligomers that we term signaling protein oligomerization transduction structures (SPOTS). Formation of SPOTS depends on the presence of an intact Fas death domain and FADD but is independent of caspase activity. Analysis of cells expressing Fas mutations from patients with the autoimmune lymphoproliferative syndrome (ALPS) reveals that formation of SPOTS can be disrupted by distinct mechanisms in ALPS.  相似文献   

7.
Taxol induces caspase-10-dependent apoptosis   总被引:9,自引:0,他引:9  
Taxol (paclitaxel) is known to inhibit cell growth and trigger significant apoptosis in various cancer cells. Although taxol induces apoptosis of cancer cells, its exact mechanism of action is not yet known. In this study we investigated death receptors, FAS-associated death domain protein (FADD), the activation of caspases-10 and -8 as well as the downstream caspases, and reactive oxygen species (ROS) in taxol-induced apoptosis in the CCRF-HSB-2 human lymphoblastic leukemia cell line. Pretreating the cells with neutralizing antibodies to Fas, tumor necrosis factor (TNF)-alpha receptor 1, or TNF-related apoptosis-inducing ligand receptors (DR4 and DR5) did not affect taxol-induced apoptosis, but transfection of the cells with a dominant negative FADD plasmid resulted in inhibition of taxol-induced apoptosis, revealing that taxol induces apoptosis independently of these death receptors but dependently on FADD. Furthermore, the drug induced activation of caspases-10, -8, -6, and -3, cleaved Bcl-2, Bid, poly(ADP-ribose) polymerase, and lamin B, and down-regulated cellular levels of FLICE-like inhibitory protein (FLIP) and X-chromosome-linked inhibitor of apoptosis protein (XIAP). However, despite the release of cytochrome c from the mitochondria in taxol-treated cells, caspase-9 was not activated. Inhibitors of caspases-8, -6, or -3 partially inhibited taxol-induced apoptosis, whereas the caspase-10 inhibitor totally abrogated this process. Taxol-induced apoptosis was also associated with decreased mitochondrial membrane potential (Deltapsim) and a significant increase in ROS generation. However, increased ROS production was not directly involved in taxol-triggered apoptosis. Therefore, these results demonstrate for the first time that taxol induces FADD-dependent apoptosis primarily through activation of caspase-10 but independently of death receptors.  相似文献   

8.
Lawrence CP  Chow SC 《FEBS letters》2005,579(28):6465-6472
Activation-induced cell death (AICD) in activated T lymphocytes is largely mediated by Fas/Fas ligand (FasL) interaction. The cytoplasmic adaptor molecule Fas-associated death domain protein (FADD) plays an essential role in the apoptotic signalling of the Fas death pathway. In the present study, we observed that FADD deficient (FADD(-/-)) Jurkat T cells undergo AICD to a similar extent as wild-type cells. AICD in wild-type Jurkat T cells is via apoptosis, whereas it is non-apoptotic in FADD(-/-) cells. The latter took up propidium iodide, exhibit a loss in mitochondrial membrane potential and have no detectable cleavage products of caspase-8 or -3 activation, suggesting that these cells die by necrosis. Wild-type Jurkat T cells undergo apoptosis when incubated with recombinant FasL and Trail but not with TNF-alpha. In contrast, FADD(-/-) Jurkat T cells are resistant to FasL and Trail but die of necrosis when incubated with TNF-alpha. We showed that neutralising anti-TNF-alpha blocked AICD as well as TNF-alpha-induced necrosis in FADD(-/-) Jurkat T cells. Furthermore, down regulating the receptor interacting protein, RIP, with geldanamycin treatment, which is essential for TNF-alpha signalling, markedly inhibited AICD in FADD(-/-) Jurkat T cells. In addition, caspase-8-deficient Jurkat T cells are resistant to Fas- and TNF-alpha-induced cell death. Taken together, our results suggest that a deficiency in FADD and not caspase-8 or the inhibition of the Fas signalling pathway sensitises Jurkat T cells to TNF-alpha-dependent necrosis during AICD.  相似文献   

9.
Cycloheximide (CHX) can contribute to apoptotic processes, either in conjunction with another agent (e.g. tumor necrosis factor-alpha) or on its own. However, the basis of this CHX-induced apoptosis has not been clearly established. In this study, the molecular mechanisms of CHX-induced cell death were examined in two different human T-cell lines. In T-cells undergoing CHX-induced apoptosis (Jurkat), but not in T-cells resistant to the effects of CHX (CEM C7), caspase-8 and caspase-3 were activated. However, the Fas ligand was not expressed in Jurkat cells either before or after treatment with CHX, suggesting that the activation of these caspases does not involve the Fas receptor. To determine whether CHX-induced apoptosis was mediated by a Fas-associated death domain (FADD)-dependent mechanism, a FADD-DN protein was expressed in cells prior to CHX treatment. Its expression effectively inhibited CHX-induced cell death, suggesting that CHX-mediated apoptosis primarily involves a FADD-dependent mechanism. Since CHX treatment did not result in the induction of Fas or FasL, and neutralizing anti-Fas and anti-tumor necrosis factor receptor-1 antibodies did not block CHX-mediated apoptosis, these results may also indicate that FADD functions in a receptor-independent manner. Surprisingly, death effector filaments containing FADD and caspase-8 were observed during CHX treatment of Jurkat, Jurkat-FADD-DN, and CEM C7 cells, suggesting that their formation may be necessary, but not sufficient, for cell death.  相似文献   

10.
In this study, we investigated the molecular pathways targeted by curcumin during apoptosis of human melanoma cell lines. We found that curcumin caused cell death in eight melanoma cell lines, four with wild-type and four with mutant p53. We demonstrate that curcumin-induced apoptosis is both dose- and time-dependent. We found that curcumin did not induce p53, suggesting that curcumin activates other apoptosis pathways. Our data show that curcumin activates caspases-3 and -8 but not caspase-9, supporting the rationale that apoptosis occurs via a membrane-mediated mechanism. Both a caspase-8 and broad-based caspase inhibitor, but not a caspase-9 specific inhibitor, suppressed curcumin-induced cell death. To further support our hypothesis that curcumin induces activation of a death receptor pathway, we show that curcumin induces Fas receptor aggregation in a FasL-independent manner and that low-temperature incubation, previously shown to inhibit receptor aggregation, prevented curcumin-induced cell death. Moreover, we demonstrate that expression of dominant negative FADD significantly inhibited curcumin-induced cell death. In addition, our results indicate that curcumin also blocks the NF-kappaB cell survival pathway and suppresses the apoptotic inhibitor, XIAP. Since melanoma cells with mutant p53 are strongly resistant to conventional chemotherapy, curcumin may overcome the chemoresistance of these cells and provide potential new avenues for treatment.  相似文献   

11.
The adaptor protein FADD directly, or indirectly via another adaptor called TRADD, recruits caspase 8 to death receptors of the tumor necrosis factor receptor family. Consequentially, a dominant-negative mutant (FADD-DN, which consists only of the FADD death domain) that binds to receptors but cannot recruit caspase 8 has been widely used to inhibit apoptosis by various stimuli that work via death receptors. Here, we show that FADD-DN also has another cell type- and cancer-dependent activity because it induces apoptosis of normal human prostate epithelial cells but not normal prostate stromal cells or prostate cancer cells. This activity is independent of FADD-DN's ability to bind to three known interacting proteins, Fas, TRADD or RIP suggesting that it is distinct from FADD's functions at activated death receptors. FADD-DN induces caspase activation in normal epithelial cells as demonstrated using a Fluorescence Resonance Energy Transfer assay that measures caspase activity in individual living cells. However, caspase-independent pathways are also implicated in FADD-DN-induced apoptosis because caspase inhibitors were inefficient at preventing prostate cell death. Therefore, the death domain of FADD has a previously unrecognized role in cell survival that is epithelial-specific and defective in cancer cells. This FADD-dependent signaling pathway may be important in prostate carcinogenesis.  相似文献   

12.
Small cell lung cancer cell lines were resistant to FasL and TRAIL-induced apoptosis, which could be explained by an absence of Fas and TRAIL-R1 mRNA expression and a deficiency of surface TRAIL-R2 protein. In addition, caspase-8 expression was absent, whereas FADD, FLIP and caspases-3, -7, -9 and -10 could be detected. Analysis of SCLC tumors revealed reduced levels of Fas, TRAIL-R1 and caspase-8 mRNA compared to non-small cell lung cancer (NSCLC) tumors. Methylation-specific PCR demonstrated methylation of CpG islands of the Fas, TRAIL-R1 and caspase-8 genes in SCLC cell lines and tumor samples, whereas NSCLC samples were not methylated. Cotreatment of SCLC cells with the demethylating agent 5'-aza-2-deoxycytidine and IFNgamma partially restored Fas, TRAIL-R1 and caspase-8 expression and increased sensitivity to FasL and TRAIL-induced death. These results suggest that SCLC cells are highly resistant to apoptosis mediated by death receptors and that this resistance can be reduced by a combination of demethylation and treatment with IFNgamma.  相似文献   

13.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

14.
Trimerization of the Fas receptor (CD95, APO-1), a membrane bound protein, triggers cell death by apoptosis. The main death pathway activated by Fas receptor involves the adaptor protein FADD (for Fas-associated death domain) that connects Fas receptor to the caspase cascade. Anticancer drugs have been shown to enhance both Fas receptor and Fas ligand expression on tumor cells. The contribution of Fas ligand-Fas receptor interactions to the cytotoxic activity of these drugs remains controversial. Here, we show that neither the antagonistic anti-Fas antibody ZB4 nor the Fas-IgG molecule inhibit drug-induced apoptosis in three different cell lines. The expression of Fas ligand on the plasma membrane, which is identified in untreated U937 human leukemic cells but remains undetectable in untreated HT29 and HCT116 human colon cancer cell lines, is not modified by exposure to various cytotoxic agents. These drugs induce the clustering of Fas receptor, as observed by confocal laser scanning microscopy, and its interaction with FADD, as demonstrated by co-immunoprecipitation. Overexpression of FADD by stable transfection sensitizes tumor cells to drug-induced cell death and cytotoxicity, whereas down-regulation of FADD by transient transfection of an antisense construct decreases tumor cell sensitivity to drug-induced apoptosis. These results were confirmed by transient transfection of constructs encoding either a FADD dominant negative mutant or MC159 or E8 viral proteins that inhibit the FADD/caspase-8 pathway. These results suggest that drug-induced cell death involves the Fas/FADD pathway in a Fas ligand-independent fashion.  相似文献   

15.
Death receptors in the TNF receptor superfamily signal for apoptosis via the ordered recruitment of FADD and caspase-8 to a death-inducing signaling complex (DISC). However, the nature of the protein-protein interactions in the signaling complex is not well defined. Here we show that FADD self-associates through a conserved RXDLL motif in the death effector domain (DED). Despite exhibiting similar binding to both Fas and caspase-8 and preserved overall secondary structure, FADD RDXLL motif mutants cannot reconstitute FasL- or TRAIL-induced apoptosis and fail to recruit caspase-8 into the DISC of reconstituted FADD-deficient cells. Abolishing self-association can transform FADD into a dominant-negative mutant that interferes with Fas-induced apoptosis and formation of microscopically visible receptor oligomers. These findings suggest that lateral interactions among adapter molecules are required for death receptor apoptosis signaling and implicate self-association into oligomeric assemblies as a key function of death receptor adapter proteins in initiating apoptosis.  相似文献   

16.
FADD is known to function as a common signaling conduit in Fas- and tumor necrosis factor (TNF)-mediated apoptosis. The convergent death signals from the Fas receptor and TNF receptor 1 are transferred to FADD by death domain interactions triggering the same cellular event, caspase-8 activation. In this work, we investigated whether the same binding surface of FADD is used for both signaling pathways by using FADD death domain mutants. Mutations in helices alpha2 and alpha3 of the FADD death domain, the interacting surface with the Fas death domain, affected TNF-mediated apoptosis to various extents. This indicated that TNF-mediated apoptosis uses the same binding surface of the FADD death domain as Fas-mediated apoptosis. The binding specificity is not the same, however. Some mutations affected the binding affinity of the Fas death domain for the FADD death domain, but did not influence TNF-mediated apoptosis and vice versa. Interestingly, all mutants tested that affected TNF-mediated apoptosis have structural perturbations, implying that the structural integrity, involving helices alpha2 and alpha3 in particular, is critical in TNF-mediated apoptosis. Our results suggest that different signaling molecules use a similar structural interaction to trigger the same cellular event, such as caspase-8 recruitment, which could be typical in convergent signal transduction.  相似文献   

17.
Yang JK  Wang L  Zheng L  Wan F  Ahmed M  Lenardo MJ  Wu H 《Molecular cell》2005,20(6):939-949
The death-inducing signaling complex (DISC) comprising Fas, Fas-associated death domain (FADD), and caspase-8/10 is assembled via homotypic associations between death domains (DDs) of Fas and FADD and between death effector domains (DEDs) of FADD and caspase-8/10. Caspase-8/10 and FLICE/caspase-8 inhibitory proteins (FLIPs) that inhibit caspase activation at the DISC level contain tandem DEDs. Here, we report the crystal structure of a viral FLIP, MC159, at 1.2 Angstroms resolution. It reveals a noncanonical fold of DED1, a dumbbell-shaped structure with rigidly associated DEDs and a different mode of interaction in the DD superfamily. Whereas the conserved hydrophobic patch of DED1 interacts with DED2, the corresponding region of DED2 mediates caspase-8 recruitment and contributes to DISC assembly. In contrast, MC159 cooperatively assembles with Fas and FADD via an extensive surface that encompasses the conserved charge triad. This interaction apparently competes with FADD self-association and disrupts higher-order oligomerization required for caspase activation in the DISC.  相似文献   

18.
The Fas receptor delivers signals crucial for lymphocyte apoptosis through its cytoplasmic death domain. Several Fas cytoplasmic-associated proteins have been reported and studied in cell lines. So far, only Fas-associated death domain protein (FADD), another death domain-containing molecule has been shown to be essential for Fas signals in vivo. FADD is thought to function by recruiting caspase-8 through its death-effector domain. To test whether FADD is sufficient to deliver Fas signals, we generated transgenic mice expressing a chimera comprised of the Fas extracellular domain and FADD death-effector domain. Expression of this protein in lymphocytes of Fas-deficient MRL-lpr/lpr mice completely diminishes their T cell but not their B cell abnormalities. These results suggest that FADD alone is sufficient for initiation of Fas signaling in primary T cells, but other pathways may operate in B cells.  相似文献   

19.
Preexposure to mild temperatures such as 40°C induces thermotolerance, whereby cells resist subsequent exposure to a toxic insult. This study investigates the protective effect of mild thermotolerance (3h, 40°C) against activation of death receptor-mediated apoptosis by H(2)O(2) in HeLa cells. H(2)O(2) (5-50μM) caused rapid activation (1-3h) of the Fas death receptor pathway of apoptosis, which was evident by up-regulation of the death ligand FasL and recruitment of the adaptor protein Fas-associated death domain to the plasma membrane. This resulted in activation of caspase-8 and caspase-2, which led to activation of the cross-talk pathway involving Bid cleavage, t-Bid translocation to mitochondria, and caspase-9 activation. These changes were all diminished in thermotolerant cells. Mild thermotolerance also protected cells against cytotoxicity from H(2)O(2) as well as execution-phase events of apoptosis such as caspase-3 activation and chromatin condensation. The antioxidant polyethylene glycol-catalase abolished FasL induction and caspase-8 activation due to H(2)O(2). FasL up-regulation; activation of caspases-8, -2, -9, and -3; and chromatin condensation were decreased by the p53 inhibitor pifithrin-α, implicating p53 as an upstream factor in the activation of death receptor-mediated apoptosis by H(2)O(2). This study advances knowledge about the protective effect of adaptive responses induced by mild stresses, such as fever temperatures, against induction of apoptosis by oxidative stress.  相似文献   

20.
Upon engagement with Fas ligand (FasL), Fas rapidly induces recruitment and self-processing of caspase-8 via the adaptor protein Fas-associated death domain (FADD), and activated caspase-8 cleaves downstream substrates such as caspase-3. We have found that penicillic acid (PCA) inhibits FasL-induced apoptosis and concomitant loss of cell viability in Burkitt's lymphoma Raji cells. PCA prevented activation of caspase-8 and caspase-3 upon treatment with FasL. However, PCA did not affect active caspase-3 in FasL-treated cells, suggesting that PCA primarily blocks early signaling events upstream of caspase-8 activation. FasL-induced processing of caspase-8 was severely impaired in the death-inducing signaling complex, although FasL-induced recruitment of FADD and caspase-8 occurred normally in PCA-treated cells. Although PCA inhibited the enzymatic activities of active recombinant caspase-3, caspase-8, and caspase-9 at similar concentrations, PCA exerted weak inhibitory effects on activation of caspase-9 and caspase-3 in staurosporine-treated cells but strongly inhibited caspase-8 activation in FasL-treated cells. Glutathione and cysteine neutralized an inhibitory effect of PCA on caspase-8, and PCA bound directly to the active center cysteine in the large subunit of caspase-8. Thus, our present results demonstrate that PCA inhibits FasL-induced apoptosis by targeting self-processing of caspase-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号