首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein B (apoB) is the most abundant protein in low density lipoproteins and plays key roles in cholesterol homeostasis. The co-translational degradation of apoB is controlled by fatty acid levels in the endoplasmic reticulum (ER) and is mediated by the proteasome. To define the mechanism of apoB degradation, we employed a cell-free system in which proteasome-dependent degradation is recapitulated with yeast cytosol, and we developed an apoB yeast expression system. We discovered that a yeast Hsp110, Sse1p, associates with and stabilizes apoB, which contrasts with data indicating that select Hsp70s and Hsp90s facilitate apoB degradation. However, the Ssb Hsp70 chaperones have no effect on apoB turnover. To determine whether our results are relevant in mammalian cells, Hsp110 was overexpressed in hepatocytes, and enhanced apoB secretion was observed. This study indicates that chaperones within distinct complexes can play unique roles during ER-associated degradation (ERAD), establishes a role for Sse1/Hsp110 in ERAD, and identifies Hsp110 as a target to lower cholesterol.  相似文献   

2.
Immunoaffinity purification of hsp90 from chick oviduct cytosol reveals two major proteins, hsp70 and a 60-kDa protein (p60), copurifying with hsp90. A similar result is obtained when hsp90 is immunoaffinity purified from chick liver and brain cytosols, avian fibroblasts, and rabbit reticulocyte lysate. This p60 is the same protein previously identified in certain assembly complexes of chick progesterone receptor generated in a cell-free reconstitution system. Tryptic and cyanogen bromide peptide fragments were generated from gel-purified p60, and partial N-terminal sequences were determined from eight peptides. The sequences show a striking similarity to the sequence of a 63-kDa human protein (IEF SSP 3521) whose abundance is increased in MRC-5 fibroblasts following simian virus 40 transformation. A monoclonal antibody was prepared against avian p60; Western immunoblot analysis showed that p60 was present in each of eight chick tissues examined and in each of the human, rat, rabbit, and Xenopus tissues tested. Immunoaffinity purifications from both chick oviduct cytosol and rabbit reticulocyte lysate using anti-p60 and anti-hsp70 monoclonal antibodies confirm that there is a relatively abundant complex in these extracts containing hsp90, hsp70, and p60. This complex appears to comprise an important functional unit in the assembly of progesterone receptor complexes. However, judging from the abundance and widespread occurrence of this multiprotein complex, hsp90, hsp70, and p60 probably function interactively in other systems as well.  相似文献   

3.
4.
One mechanism utilized by cells to maintain signaling pathways is to regulate the levels of specific signal transduction proteins. The compound geldanamycin (GA) specifically interacts with heat shock protein 90 (hsp90) complexes and has been widely utilized to study the role of hsp90 in modulating the function of signaling proteins. In this study, we used GA to demonstrate that levels of heterotrimeric Galpha subunits can be regulated through interactions with hsp90. In a dose-dependent manner, GA significantly reduced the steady state levels of endogenous Galpha(o) expression in two cell lines (PC12 and GH3) and had a similar effect on Galpha(o) transiently expressed in COS cells. Galpha(o) synthesis and degradation was studied in PC12 cells and in transiently transfected COS cells. (35)S labeling followed by immunoprecipitation demonstrated no effect of GA on the rate of Galpha(o) synthesis, but GA accelerated degradation of Galpha(o) in both PC12 cells and COS cells. The use of inhibitors, including lactacystin (a proteosome-specific inhibitor), suggests that Galpha(o) is predominantly degraded through the proteosome pathway. In vitro translated (35)S-labeled Galpha(o) could be detected in hsp90 immunoprecipitates, and this interaction did not require N-terminal myristoylation. Taken together, these results suggest that heterotrimeric Galpha(o) subunits are protected from degradation by interaction with hsp90 and that the interaction of Galpha subunits with heat shock proteins may be a general mechanism for regulating Galpha levels in the cell.  相似文献   

5.
The assembly of progesterone receptor (PR) heterocomplexes in vitro involves at least eight components of the molecular chaperone machinery, and as earlier reports have shown, these proteins exhibit complex, dynamic, but ordered, interactions with one another and PR. Using the selective hsp90 binding agent geldanamycin (GA), we have found that PR assembly in vitro can be arrested at a previously observed intermediate assembly step. Like mature PR complexes, the intermediate complexes contain hsp90, but they differ from mature complexes by the presence of hsp70, p60, and p48 and the absence of immunophilins and p23. Arrest of PR assembly is likely due to GA's ability to directly block binding of p23 to hsp90. An important functional consequence of GA-mediated assembly arrest in vitro is the inability of the resulting PR complexes to bind progesterone, despite the presence of hsp90 in the receptor complexes. The biological significance of the in vitro observations is demonstrated by GA's ability to (i) rapidly block PR's hormone binding capacity in intact cells and (ii) alter the composition of COS cell PR complexes in a manner similar to that observed during in vitro reconstitutions. An updated model for the cyclic assembly pathway of PR complexes that incorporates the present findings with earlier results is presented.  相似文献   

6.
To better understand the assembly mechanism for the progesterone receptor (PR), we have developed cell-free systems for studying interactions of PR, hsp90, and other associated proteins. When PR is incubated in rabbit reticulocyte lysate, its association with hsp90, hsp70, the three immunophilins FKBP54, FKBP52 and CyP-40, and with p23 is observed. These interactions require ATP/Mg2+ and when ATP is limiting the PR complex is altered to one containing the proteins p60 and p48, but lacking immunophilins and p23. We have studied two pre-formed hsp90 complexes that may participate in the assembly of PR complexes. One contains hsp90 bound to hsp70 and p60 and this complex forms spontaneously in the absence of ATP. A second complex contains hsp90 bound to p23 plus the three immunophilins and some hsp70. The formation of this complex requires ATP. In further studies we have shown that purified hsp90 can bind to purified p23 and this interaction requires both ATP and molybdate. This explains, in part, the known effects of ATP and molybdate on assembly of PR complexes.  相似文献   

7.
8.
Although hsp70 antagonizes apoptosis-inducing factor (AIF)-mediated cell death, the relative importance of preventing its release from mitochondria versus sequestering leaked AIF in the cytosol remains controversial. To dissect these two protective mechanisms, hsp70 deletion mutants lacking either the chaperone function (hsp70-deltaEEVD) or ATPase function (hsp70-deltaATPase) were selectively overexpressed before exposing cells to a metabolic inhibitor, an insult sufficient to cause mitochondrial AIF release, nuclear AIF accumulation, and apoptosis. Compared with empty vector, overexpression of wild type human hsp70 inhibited bax activation and reduced mitochondrial AIF release after injury. In contrast, mutants lacking either the chaperone function (hsp70-deltaEEVD) or the ATP hydrolytic domain (hsp70-deltaATPase) failed to prevent mitochondrial AIF release. Although hsp70-deltaEEVD did not inhibit bax activation or mitochondrial membrane injury after cell stress, this hsp70 mutant co-immunoprecipitated with leaked AIF in injured cells and decreased nuclear AIF accumulation. In contrast, hsp70-deltaATPase did not interact with AIF either in intact cells or in a cell-free system and furthermore, failed to prevent nuclear AIF accumulation. These results demonstrate that mitochondrial protection against bax-mediated injury requires both intact chaperone and ATPase functions, whereas the ATPase domain is critical for sequestering AIF in the cytosol.  相似文献   

9.
Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the ubiquitous protein chaperone hsp90. We have shown previously that nNOS expressed in Sf9 cells where endogenous heme levels are low is activated from the apo- to the holo-enzyme by addition of exogenous heme to the culture medium, and this activation is inhibited by radicicol, a specific inhibitor of hsp90 (Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J. M., Lowe, E. R., Kamada, Y., Pratt, W. B., and Osawa, Y. (2002) J. Biol. Chem. 278, 15465-15468). In this work, we examine heme binding by apo-nNOS to form the active enzyme in a cell-free system. We show that cytosol from Sf9 cells facilitates heme-dependent apo-nNOS activation by promoting functional heme insertion into the enzyme. Sf9 cytosol also converts the glucocorticoid receptor (GR) to a state where the hydrophobic ligand binding cleft is open to access by steroid. Both cell-free heme activation of purified nNOS and activation of steroid binding activity of the immunopurified GR are inhibited by radicicol treatment of Sf9 cells prior to cytosol preparation, and addition of purified hsp90 to cytosol partially overcomes this inhibition. Although there is an hsp90-dependent machinery in Sf9 cytosol that facilitates heme binding by apo-nNOS, it is clearly different from the machinery that facilitates steroid binding by the GR. hsp90 regulation of apo-nNOS heme activation is very dynamic and requires higher concentrations of radicicol for its inhibition, whereas GR steroid binding is determined by assembly of stable GR.hsp90 heterocomplexes that are formed by a purified five-chaperone machinery that does not activate apo-nNOS.  相似文献   

10.
The glucocorticoid receptor (GR) occurs in cells in the form of a hormone-responsive complex (HRC) with hsp90. The HRC is dynamic, with hsp90 constantly directing disassembly, and hsp70, assisted by hsp90, driving reassembly. WCL2 cells stably overexpress GR to an extent that reduces the excess of hsp90 and hsp70 over GR by about 10-fold, compared to the ratio in HeLa cells. Yet the half-lives of the HRC in WCL2 and HeLa cells are comparable. As a result, the rate of assembly in WCL2 is overwhelmed by accumulation of the non-hormone-binding form of GR in its complex with hsp70 and hsp90. This form comprised some 50% of total GR in WCL2 cells. When the cells were heated to 44 degrees C, the hormone-binding activity and solubility of GR fell in parallel, and the receptor formed heavy aggregates by sequestering large amounts of hsp70. About 40% of this aggregated receptor was degraded in cells recovering at 37 degrees C in the presence of cycloheximide. Concentration of GR protein increased with increasing induction of hsp70 following exposure to 41-44 degrees C. However, balance between hormone-binding and inert forms of GR could shift in either direction in response to the increase or decrease of hsp90 induction, depending on the temperature. Suppression of degradation following re-exposure of the cells to 44 degrees C correlated better with induction of hsp90 than hsp70. We infer that sequestration of hsp70 by heat-unfolded receptor is the primary factor opposing degradation, while induction of hsp90 acts to further suppress degradation by accelerating HRC assembly.  相似文献   

11.
Alcohol-inducible cytochrome P450 2E1 (CYP2E1) has the most rapid turnover of any member of this large family of membrane-bound oxygenases, and its degradation rate is altered profoundly by various substrates, such as ethanol and CCl(4). CYP2E1 is degraded by the ubiquitin-proteasome pathway, and because the hsp90/hsp70-based chaperone machinery is often involved in maintaining the balance between protein integrity and degradation by this pathway, we have asked whether CYP2E1 is regulated by the chaperone machinery. We show here that treatment of transformed human skin fibroblasts stably expressing CYP2E1 with the hsp90 inhibitor radicicol results in CYP2E1 degradation that is inhibited by the proteasome inhibitor lactacystin. Immunoadsorption of hsp90 from cytosol of HEK cells expressing the truncated CYP2E1(Delta3-29) yields coadsorption of CYP2E1(Delta3-29). Cotransfection of HEK cells with both the truncated CYP2E1 and the hsp70-dependent E3 ubiquitin ligase CHIP results in CYP2E1(Delta3-29) degradation, and CYP2E1(Delta3-29) co-immunoadsorbs with myc-CHIP from cytosol of cotransfected cells. Purified, bacterially expressed CYP2E1(Delta3-29) is ubiquitylated in a CHIP-dependent manner when it is incubated with a purified system containing the E1 ubiquitin activating enzyme, E2, and CHIP. CYP2E1 is the first P450 shown to be an hsp90 "client" protein that can be ubiquitylated by the hsp70-dependent E3 ubiquitin ligase CHIP. Our observations lead to a general model of how substrates, such as ethanol, can regulate the interaction of CYP2E1 with the chaperones hsp90 and hsp70 to profoundly alter enzyme turnover.  相似文献   

12.
Wang XY  Chen X  Oh HJ  Repasky E  Kazim L  Subjeck J 《FEBS letters》2000,465(2-3):98-102
The 110 kDa heat shock protein (HSP) (hsp110) has been shown to be a diverged subgroup of the hsp70 family and is one of the major HSPs in mammalian cells [1,2]. In examining the native interactions of hsp110, we observed that it is found to reside in a large molecular complex. Immunoblot analysis and co-immunoprecipitation studies identified two other HSPs as components of this complex, hsc70 and hsp25. When examined in vitro, purified hsp25, hsp70 and hsp110 were observed to spontaneously form a large complex and to directly interact with one another. When luciferase was added to this in vitro system, it was observed to migrate into this chaperone complex following heat shock. Examination of two deletion mutants of hsp110 demonstrated that its peptide-binding domain is required for interaction with hsp25, but not with hsc70. The potential function of the hsp110-hsc70-hsp25 complex is discussed.  相似文献   

13.
It is known that inhibition of histone deacetylases (HDACs) leads to acetylation of the abundant protein chaperone hsp90. In a recent study, we have shown that knockdown of HDAC6 by a specific small interfering RNA leads to hyperacetylation of hsp90 and that the glucocorticoid receptor (GR), an established hsp90 "client" protein, is defective in ligand binding, nuclear translocation, and gene activation in HDAC6-deficient cells (Kovacs, J. J., Murphy, P. J. M., Gaillard, S., Zhao, X., Wu, J-T., Nicchitta, C. V., Yoshida, M., Toft, D. O., Pratt, W. B., and Yao, T-P. (2005) Mol. Cell 18, 601-607). Using human embryonic kidney wild-type and HDAC6 (small interfering RNA) knockdown cells transiently expressing the mouse GR, we show here that the intrinsic properties of the receptor protein itself are not affected by HDAC6 knockdown, but the knockdown cytosol has a markedly decreased ability to assemble stable GR.hsp90 heterocomplexes and generate stable steroid binding activity under cell-free conditions. HDAC6 knockdown cytosol has the same ability to carry out dynamic GR.hsp90 heterocomplex assembly as wild-type cytosol. Addition of purified hsp90 to HDAC6 knockdown cytosol restores stable GR.hsp90 heterocomplex assembly to the level of wild-type cytosol. hsp90 from HDAC6 knockdown cytosol has decreased ATP-binding affinity, and it does not assemble stable GR.hsp90 heterocomplexes when it is a component of a purified five-protein assembly system. Incubation of knockdown cell hsp90 with purified HDAC6 converts the hsp90 to wild-type behavior. Thus, acetylation of hsp90 results in dynamic GR.hsp90 heterocomplex assembly/disassembly, and this is manifest in the cell as a approximately 100-fold shift to the right in the steroid dose response for gene activation.  相似文献   

14.
Vascular soluble guanylate cyclase (sGC) exists in multimeric complexes with endothelial nitric oxide (NO) synthase (eNOS) and heat shock protein 90 (hsp90). Whereas disruption of hsp90-eNOS complexes clearly attenuates eNOS-dependent vascular relaxation, the contribution of sGC-hsp90 complexes to eNOS- or NO donor-dependent relaxations remains unclear. Isolated rat thoracic aortic rings were preincubated with structurally diverse hsp90 binding inhibitors, radicicol (RA) or geldanamycin (GA), or vehicle for 0.5, 1, or 15 h. Preconstricted vessels were exposed to ACh, 8-bromo-cGMP (8-BrcGMP), forskolin, or one of three NO donors: nitroglycerin (NTG), sodium nitroprusside, or spermine NONOate (SNN). Both RA and GA inhibited endothelium-dependent relaxations dose dependently. Indomethacin or the antioxidant tiron did not affect the inhibition of ACh-induced relaxations by GA. Long-term (15 h) exposure to RA inhibited all NO donor-induced relaxations; however, GA inhibited SNN-induced relaxation only. The effects of GA and RA appeared to be selective because 15-h treatment with either agent did not affect forskolin-induced relaxations and only slightly decreased 8-BrcGMP-induced relaxations. Similarly to their effects on NO-donor-induced relaxation, 15-h exposure to RA, but not to GA, decreased hsp90-bound sGC protein expression and NTG-stimulated cGMP formation in aortic rings, whereas RA more than GA reduced SNN-stimulated cGMP formation. We conclude that RA, much more so than GA, selectively inhibits sGC-dependent relaxations of aortic rings by reducing sGC expression, disrupting sGC-hsp90 complex formation and decreasing cGMP formation. These studies suggest that hsp90 regulates both eNOS- and sGC-dependent relaxations.  相似文献   

15.
A rabbit reticulocyte lysate system that has been used to reconstitute functional complexes between steroid receptors and the 90-kDa heat shock protein (hsp90) has been used here to form complexes between the pp60src tyrosine kinase and hsp90. Reticulocyte lysate forms complexes between hsp90 and a temperature-sensitive mutant of Rous sarcoma virus pp60v-src, which is normally present in cytosol virtually entirely in the multiprotein complex form. In addition, hsp90 in the lysate complexes with wild-type pp60v-src, of which only a small portion is normally recovered in cytosol in the native multiprotein complex, and with the cellular homolog, pp60c-src, which has never been recovered in cytosol in the form of a native multiprotein complex with hsp90. Moreover, the reticulocyte lysate-reconstituted complex also contains the 50-kDa phosphoprotein component of the native pp60v-src multiprotein complex. The native and reconstituted pp60src-hsp90 complexes have similar thermal stability and, like steroid receptor heterocomplexes, they are stabilized by molybdate. As previously shown with reticulocyte lysate-reconstituted steroid receptor heteroprotein complexes, the reconstituted pp60src multiprotein complex contains hsp70, which is a major candidate for providing the protein unfoldase activity required for hsp90 association.  相似文献   

16.
The heat shock protein hsp70/hsc70 is a required component of a five-protein (hsp90, hsp70, Hop, hsp40, and p23) minimal chaperone system reconstituted from reticulocyte lysate that forms glucocorticoid receptor (GR).hsp90 heterocomplexes. BAG-1 is a cofactor that binds to the ATPase domain of hsp70/hsc70 and that modulates its chaperone activity. Inasmuch as BAG-1 has been found in association with several members of the steroid receptor family, we have examined the effect of BAG-1 on GR folding and GR.hsp90 heterocomplex assembly. BAG-1 was present in reticulocyte lysate at a BAG-1:hsp70/hsc70 molar ratio of approximately 0.03, and its elimination by immunoadsorption did not affect GR folding and GR. hsp90 heterocomplex assembly. At low BAG-1:hsp70/hsc70 ratios, BAG-1 promoted the release of Hop from the hsp90-based chaperone system without inhibiting GR.hsp90 heterocomplex assembly. However, at molar ratios approaching stoichiometry with hsp70, BAG-1 produced a concentration-dependent inhibition of GR folding to the steroid-binding form with corresponding inhibition of GR.hsp90 heterocomplex assembly by the minimal five-protein chaperone system. Also, there was decreased steroid-binding activity in cells that were transiently or stably transfected with BAG-1. These observations suggest that, at physiological concentrations, BAG-1 modulates assembly by promoting Hop release from the assembly complex; but, at concentrations closer to those in transfected cells and some transformed cell lines, hsp70 is continuously bound by BAG-1, and heterocomplex assembly is blocked.  相似文献   

17.
Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization   总被引:8,自引:0,他引:8  
Stabilization and overexpression are hallmarks of mutant p53 found in nearly 50% of human tumors. Mutations in the conformation-sensitive core domain of p53 often lead to association with molecular chaperones such as hsp70 and hsp90. Inhibition of hsp90 function accelerates mutant p53 degradation. We recently found that expression of p53 core domain mutants inhibits MDM2 degradation, suggesting that mutant p53 can modulate MDM2 functions. In this report, we show that mutant p53 mediates formation of MDM2-p53-hsp90 complexes. Release of MDM2 from the p53-hsp90 complex after DNA damage restores MDM2 but not p53 turnover, whereas dissociation of hsp90 by geldanamycin increases the degradation of both MDM2 and mutant p53. Mutant p53 degradation after hsp90 inhibition requires MDM2 expression. The interaction between MDM2 and hsp90 is disrupted by the 2A10 antibody, which recognizes a site on MDM2 important for binding to alternative reading frame (ARF). Expression of mutant p53 prevents MDM2 from binding ARF and accumulating in the nucleolus in an hsp90-dependent fashion. These results suggest that hsp90 recruited by mutant p53 conceals the ARF-binding site on MDM2 and inhibits its ubiquitin-protein isopeptide ligase function, resulting in the stabilization of both mutant p53 and MDM2.  相似文献   

18.
19.
20.
Heat shock proteins (hsp(s)) have been postulated to interact with APCs through specific receptors, although the receptors are yet to be identified. Specificity, saturation, and competition are the three defining attributes of a receptor-ligand interaction. We demonstrate here that the interaction of the heat shock proteins gp96 and hsp90 with CD11b+ cells is specific and saturable and that gp96 can compete with itself in gp96-macrophage interaction. Interestingly, the phylogenetically related hsp90 also competes quite effectively with gp96 for binding to macrophages, whereas the unrelated hsp70 does so relatively poorly, although it binds CD11b+ cells just as effectively. These data provide evidence that the heat shock proteins interact with APCs with specificity and for the existence of at least two distinct receptors, one for gp96 and hsp90 and the other for hsp70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号