首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pieper U  Pingoud A 《Biochemistry》2002,41(16):5236-5244
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.D/EXK motif, is conserved among these sequences. A mutational analysis, in which the carboxylates (aspartic acid in McrC) of this motif were substituted with alanine or asparagine and lysine was substituted with alanine or arginine, strongly suggests that Asp244, Asp257, and Lys259 represent the catalytic center of E. coli McrC. Whereas the variants D244A (or -N), D257A (or -N), and K259A are inactive in DNA cleavage (K259R has residual DNA cleavage activity), they interact with McrB like wild-type McrC, as can be deduced from the finding that they stimulate the McrB-catalyzed GTP hydrolysis to the same extent as wild-type McrC. Thus, whereas McrC variants defective in DNA cleavage can stimulate the GTPase activity of McrB, the DNase activity of McrC is not supported by McrB variants defective in GTP hydrolysis.  相似文献   

2.
3.
Summary When E. coli or infected E. coli are gently lysed the DNA is released as a very fast sedimenting species that is presumably bound to membrane material. If this complex is now subjected to restriction enzyme cleavage, only a minor fraction of the fast sedimenting DNA remains and this is found, after purification, to be enriched for branched molecules.  相似文献   

4.
W Bujalowski  T M Lohman 《Biochemistry》1986,25(24):7799-7802
Four distinct binding modes for the interaction of Escherichia coli single-strand binding (SSB) protein with single-stranded (ss) DNA have been identified on the basis of quantitative titrations that monitor the quenching of the SSB protein fluorescence upon binding to the homopolynucleotide poly(dT) over a range of MgCl2 and NaCl concentrations at 25 and 37 degrees C. This is the first observation of multiple binding modes for a single protein binding to DNA. These results extend previous studies performed in NaCl (25 degrees C, pH 8.1), in which two distinct SSB-ss DNA binding modes possessing site sizes of 33 and 65 nucleotides per bound SSB tetramer were observed [Lohman, T.M., & Overman, L. B. (1985) J. Biol. Chem. 260, 3594-3603]. Each of these binding modes differs in the number of nucleotides occluded upon interaction with ss DNA (i.e., site size). Along with the previously observed modes with site sizes of 35 +/- 2 and 65 +/- 3 nucleotides per tetramer, a third distinct binding mode, at 25 degrees C, has been identified, possessing a site size of 56 +/- 3 nucleotides per bound SSB tetramer, which is stable over a wide range of MgCl2 concentrations. At 37 degrees C, a fourth binding mode is observed, possessing a site size of 40 +/- 2 nucleotides per tetramer, although this mode is observable only over a small range of salt concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
From the cells of an Escherichia coli K-12 strain, a 22,000-dalton protein which has an affinity for the superhelical DNA molecule was purified to apparent homogeneity by monitoring the DNA-binding activity using the filter binding assay. In the sedimentation analysis of the DNA-protein complex, the protein has an affinity for the superhelical or single-stranded DNA molecule but neither for the open-circular nor for the linear DNA molecule. The amino acid composition of the protein resembled those of the other prokaryotic histone-like proteins and also to eukaryotic histones H2A and H2B. The protein precipitated upon heating, which is in contrast to the heat-stable feature of the other histone-like proteins. Furthermore, DNA and RNA syntheses in vitro were not affected by the presence of the protein. In view of these characteristics, this protein may play a role in maintaining the bacterial nucleoid structure.  相似文献   

6.
Escherichia coli endodeoxyribonuclease V acts at many sites of damage in duplex DNA, including apurinic/apyrimidinic sites, lesions induced by ultraviolet light which are not pyrimidine dimers, adducts of 7-bromomethylbenz[a]anthracene, and, as demonstrated earlier (Gates, F. T., and Linn, S. (1977a) J. Biol. Chem. 252. 1647-1653), it degrades uracil-containing duplex DNA most efficiently. The cleavage rate increases with increasing substitution of uracil for thymine in T5 DNA, with a replacement of one-eight of thymine generating the apparent maximum cleavage rate. However, the apparent reaction limit with DNA containing 3.8% of thymine replaced by uracil corresponds to cleavage at only 6% of the dUMP residues. Evidently, the enzyme recognizes some peculiarities of abnormal DNA structure, but not simply distortions, since some lesions, including pyrimidine dimers, are not substrates. Endonuclease V generates double strand breaks in a constant ratio to single strand nicks, regardless of the substrate. It degrades DNA processively, completing the digestion of one substrate molecule before proceeding to the next. The enzyme also appears to act cooperatively. Cleavage at methylbenz[a]anthracene adducts is usually or always 5' to the lesion. Endonuclease V seems well suited to act as a DNA repair enzyme, surveying the genome for structural distortions generated by lesions for which specific repair systems might not exist.  相似文献   

7.
The nucleotide recognition sequence for the restriction-modification enzyme of Escherichia coli A (EcoA) has been determined to be GAG-7N-GTCA. This sequence is fairly similar, but distinctly different from the two other type I restriction enzyme recognition sites known for E. coli B and E. coli K12, respectively. N6-adenosine methylation has been observed at nucleotide positions 2 and 12 within that sequence after modification by EcoA. As a reference point for mapping the single EcoA site in lambda, the position of lambda point mutation Oam29 has been determined also.  相似文献   

8.
The EcoA restriction enzyme from Escherichia coli 15T- has been isolated. It proves to be an unusual enzyme, clearly related functionally to the classical type I restriction enzymes. The basic enzyme is a two subunit modification methylase. Another protein species can be purified which by itself has no enzymatic activities but which converts the modification methylase to an ATP and S-adenosylmethionine-dependent restriction endonuclease. The DNA recognition sequence of EcoA has an overall structure that is very similar to previously determined type I sequences. It is: 5'-GAGNNNNNNNGTCA-3' 3'-CTCNNNNNNNCAGT-5' where N can be any nucleotide. Modification methylates the adenosyl residue in the specific trinucleotide and the adenosyl residue in the lower strand of the specific tetranucleotide.  相似文献   

9.
The fermentation and recovery of the EcoRl restriction endonuclease with a genetically modified Escherichia coli strain is investigated. Vast amounts of product could be obtained after cultivation in a 20-L computer-coupled pilot fermentor and purification of the recovered wet cells. It was found that in the end the product is at least inhibitory and probably lethal to the cells (the lethality has been proven with genetic experiments) so that optimum yield requires an optimized choice for the time instant of induction. Growth after induction and product formation require substantial amounts of oxygen, which must be supplied if a high population level is to be achieved. pH control may alleviate the burden of high oxygen supply. Quantitative assessment after the different purification stages indicate that approximately 15% active enzyme can be obtained from the total amount produced.  相似文献   

10.
The nucleotide sequence recognized and cleaved by the restriction endonuclease MboI is 5' GATC and is identical to the central tetranucleotide of the restriction sites of BamHI and BglII. Experiments on the restriction of DNA from Escherichia coli dam and dam+ confirm the notion that GATC sequences are adenosyl-methylated by the dam function of E. coli and thereby are made refractory to cleavage by MboI. On the basis of this observation the degree of dam methylation of various DNAs was examined by cleavage with MboI and other restriction endonucleases. In plasmid DNA essentially all of the GATC sequences are methylated by the dam function. The DNA of phage lambda is only partially methylated, extended methylation is observed in the DNA of a substitution mutant of lambda, lambda gal8bio256, and in the lambda derived plasmid, lambdadv93, which is completely methylated. In contrast, phage T7 DNA is not methylated by dam. A suppression of dam methylation of T7 DNA appears to act only in cis dam. A suppression of dam methylation of T7 DNA appears to act only in cis since plasmid DNA replicated in a T7-infected cell is completely methylated. The results are discussed with respect to the participation of the dam methylase in different replication systems.  相似文献   

11.
Digestion of polyoma viral DNA with a restriction enzyme from Haemophilus aegyptius generates at least 22 unique fragments. The fragments have been characterized with respect to size and physical order on the polyoma genome, and the 5' to 3' orientation of the (+) and (-) strands has been determined. A method for specific radiolabeling of adjacent fragments was employed to establish the fragment order. This technique may be useful for ordering the fragments produced by digestion of complex DNAs.  相似文献   

12.
13.
A type I restriction endonuclease from a new isolate of Escherichia coli (E. coli E166) has been purified and characterised. The enzyme, EcoD, has a recognition sequence similar in overall structure to the previously determined type I enzyme sequences, an exception being that it is degenerate. The sequence is 5'-T-T-A-N-N-N-N-N-N-N-G-T-C-Y-3' 3'-A-A-T-N-N-N-N-N-N-N-C-A-G-R-5' where Y is a pyrimidine, R is a purine and N can be any nucleotide. The enzyme methylates adenosyl residues in both strands of the DNA that are separated by ten base pairs, suggesting that the enzyme interacts with DNA along one face of the helix making contacts in two successive major grooves.  相似文献   

14.
15.
16.
17.
Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Also the growth of dC-substituted T4 phage and host Escherichia coli cells is inhibited by denB expression presumably because of the inhibitory effect on replication of dC-containing DNA. Recently, we have demonstrated that an efficient cleavage by Endo IV occurs exclusively at the 5′-proximal dC (dC1) within a hexameric or an extended sequence consisting of dC residues at the 5′-proximal and the 3′-proximal positions (dCs tract), in which a third dC residue within the tract affects the polarized cleavage and cleavage rate. Here we isolate and characterize two denB mutants, denB(W88R) and denB(S176N). Both mutant alleles have lost the detrimental effect on the host cell. Endo IV(W88R) shows no enzymatic activity (<0.4% of that of wild-type Endo IV). On the other hand, Endo IV(S176N) retains cleavage activity (17.5% of that of wild-type Endo IV), but has lost the polarized and restricted cleavage of a dCs tract, indicating that the Ser176 residue of Endo IV is implicated in the polarized cleavage of a dCs tract which brings about a detrimental effect on the replication of dC-containing DNA.  相似文献   

18.
Two mutants of the EcoRI endonuclease (R200K and E144C) predominantly nick only one strand of the DNA substrate. Temperature sensitivity of the mutant enzymes allowed us to study the consequences of inflicting DNA nicks at EcoRI sites in vivo. Expression of the EcoRI endonuclease mutants in the absence of the EcoRI methyltransferase induces the SOS DNA repair response and greatly reduces viability of recA56, recB21 and lexA3 mutant strains of Escherichia coli. In parallel studies, overexpression of the EcoRV endonuclease in cells also expressing the EcoRV methyltransferase was used to introduce nicks at non-cognate EcoRV sites in the bacterial genome. EcoRV overproduction was lethal in recA56 and recB21 mutant strains and moderately toxic in a lexA3 mutant strain. The toxic effect of EcoRV overproduction could be partially alleviated by introduction into the cells of multiple copies of the E. coli DNA ligase gene. These observations suggest that an increased number of DNA nicks can overwhelm the repair capacity of DNA ligase, resulting in the conversion of a proportion of DNA nicks into DNA lesions that require recombination for repair.  相似文献   

19.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

20.
Electron microscopic examination of DNA intermediates formed by the restriction endonuclease of Escherichia coli B revealed supercoiled loops that are presumably formed during an ATP-dependent DNA translocation process in which the enzyme remains bound to the recognition site while tracking along the DNA helix to a cleavage site. The rate of DNA translocation during this process is at least 5000 base pairs/min at 37 degrees C. Even after all cleavages have been completed, complexes are seen that contain terminal loops or loop plus tail structures. During this later phase of the reaction, ATP is hydrolyzed at a rate which is dependent upon the size of the largest possible loop (or loop plus tail); this ATP hydrolysis can be terminated by one double-strand cleavage within the loop region between the recognition site and the terminus. To explain these results, it is hypothesized that after cleavage the enzyme cycles between a tracking (and possibly back-tracking) mode which is fueled by ATP hydrolysis and a relatively long static period in which ATP hydrolysis does not occur. While tracking, the enzyme would be bound both to the recognition site and to a distal site but, while static, the enzyme would be bound only at the recognition site of nonlooped molecules. This post-nuclease phase of the reaction is hypothesized to reflect a reaction whereby the enzyme initially scans DNA molecules before making a strand cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号