首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
A NADH-linked oxygen-tolerant malate dehydrogenase was purified 270-fold from cell extracts of Methanospirillum hungatii. Inhibitors of the enzyme included ADP, alpha-ketoglutarate, and excess NADH. Inhibition patterns for ADP were competitive with respect to NADH and non-competitive with respect to oxalacetate. Inhibition by alpha-ketoglutarate was non-competitive with oxalacetate as variable substrate and uncompetitive with respect to NADH. alpha-Ketoglutarate is surmised to function as an end-product inhibitor of the enzyme in reactions converting oxalacetate to alpha-ketoglutarate. No enzyme activity was detected in the direction of malate conversion to oxalacetate, in keeping with a strictly biosynthetic function of the enzyme. An analysis of variance of intial rate data fit to sequential and ping-pong equations showed that a sequential mechanism was perferred. The malate dehydrogenase of M. hungatii resembles those of many other bacteria and eucaryotic cells respect to molecular weight (61,700) and reaction mechanism, but may be regulated differently.  相似文献   

2.
It has been previously shown that triglycerides can be specifically hydrolyzed by lipase from Rhizopus arrhizus in the presence of hog liver esterase and sodium dodecyl sulfate. The glycerol produced can then be measured by sequential reactions with glycerokinase, pyruvate kinase, and lactate dehydrogenase: glycerol and ATP are converted to glycerol-3-phosphate and ADP by glycerokinase; the ADP reacts with phosphoenolpyruvate and pyruvate kinase to yield pyruvate; the pyruvate is converted to lactate with lactate dehydrogenase, and the cofactor NAD+ is simultaneously reduced to NADH. This report describes procedures by which either the disappearance of NADH or the appearance of NAD+ was determined fluorometrically, with 10- to 100-fold greater sensitivity than by spectrophotometry. In addition, enzymatic cycling of NAD+ was used to increase the sensitivity of the assay over 1000-fold, and thereby provided accurate measurement of less than 1 ng of triglyceride. Results obtained from the three fluorometric methods were highly correlated with an automated periodate oxidation method using serum samples and lipid extracts of muscle tissue.  相似文献   

3.
The metabolism of L-asparagine in pancreatic islets was investigated. The deamidation of L-asparagine and the conversion of aspartate to oxalacetate, by transamination, may occur in both the cytosol and mitochondria. Oxalacetate is then converted to pyruvate in part via phosphoenolpyruvate and in part via malate. The latter modality, by consuming NADH and generating NADPH, may lead to changes in the redox state of the cytosolic NADH/NAD+ and NADPH/NADP+ couples. Such changes may in turn account, in part at least, for the capacity of L-asparagine to augment insulin release induced by certain nutrient secretagogues.  相似文献   

4.
(1) Rabbit liver mitochondria can convert exogenous phosphoenolpyruvate to malate. (2) Malate production is dependent on phosphoenolpyruvate and HCO3- and is stimulated by CN- or malonate alone and especially in combination. (3) Malate production is inhibited 70% by 3-mercaptopicolinate, a specific inhibitor of phosphoenolpyruvate carboxykinase, and 50-60% by 1,2,3-benzenetricarboxylate, an inhibitor of the tricarboxylate transporter. (4) Rat liver mitochondria incubated with phosphoenolpyruvate under identical conditions do not produce malate. (5) Malate production from phosphoenolpyruvate is stimulated by exogenous GDP or IDP but not by ADP. (6) Data support the conclusion that malate is being produced from oxalacetate generated by reversal of mitochondrial phosphoenolpyruvate carboxykinase. A possible role for this enzyme in hepatic lipogenesis is suggested.  相似文献   

5.
S L Ausenhus  M H O'Leary 《Biochemistry》1992,31(28):6427-6431
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate dehydrogenase in assay solutions containing high concentrations of L-glutamate and aspartate aminotransferase. Under these conditions, oxalacetic acid produced in the carboxylation reaction was efficiently transaminated, and decarboxylation to form spurious pyruvate was negligible. Second, sequential reduction of oxalacetate and pyruvate was achieved by initially running the reaction in the presence of malate dehydrogenase with NADH in excess over phosphoenolpyruvate. After the reaction was complete, lactate dehydrogenase was added, thus giving a measure of pyruvate concentration. At pH 8.0 in the presence of Mg2+, the rate of phosphoenolpyruvate hydrolysis was 3-7% of the total reaction rate. The hydrolysis reaction catalyzed by phosphoenolpyruvate carboxylase was strongly metal dependent, with rates decreasing in the order Ni2+ greater than Co2+ greater than Mn2+ greater than Mg2+ greater than Ca2+. These results suggest that the active site metal ion binds to the enolate oxygen, thus stabilizing the proposed enolate intermediate. The more stable the enolate, the less reactive it is toward carboxylation and the greater the opportunity for hydrolysis.  相似文献   

6.
A rapid, continuous spectrophotometric method has been developed for the assay of decarboxylases. The assay uses a coupled enzyme system in which liberated CO2 is reacted with phosphoenolpyruvate and phosphoenolpyruvate carboxylase to form oxaloacetate, which in turn is reduced by malate dehydrogenase to L-malate concomitantly with the oxidation of NADH to NAD. The resultant decrease in absorbance at 340 nm accurately reflects the activity of the decarboxylase. The method is capable of detecting the liberation of as little as 1 nmol of CO2/min and was tested in assays of lysine decarboxylase, orotidine-5'-phosphate decarboxylase, and 4'-phosphopantothenoyl-L-cysteine decarboxylase.  相似文献   

7.
Cell-free extracts of Acetobacter suboxydans were prepared which were capable of condensing alpha-ketoisovalerate with (14)C-labeled acetyl-coenzyme A to yield (14)C-labeled alpha-isopropylmalate. The product of the reaction was isolated by paper and column chromatography and was characterized by recrystallization with synthetic alpha-isopropylmalic acid to constant specific radioactivity. The formation of alpha-isopropylmalate by extracts of A. suboxydans plus the ability of the organism to grow in a simple glucose-glycerol medium containing glutamic acid as the only amino acid indicate that the pathway for leucine biosynthesis shown to exist in yeast and Salmonella typhimurium also occurs in A. suboxydans. As a comparison, the condensation of oxalacetate and ((14)C) acetyl-coenzyme A to yield ((14)C) citric acid was shown, by similar means, to occur in A. suboxydans. This is of interest since the existence of this classical condensing enzyme has hitherto not been demonstrated in this organism. This reaction was further demonstrated in cell-free extracts of A. suboxydans by means of a spectrophotometric assay at 232 mmu which measured the cleavage of the carbon-sulfur bond of acetyl-coenzyme A in the presence of oxalacetate. Comparison of the specific activities of crude cell-free extracts indicated a much more extensive occurrence of this reaction in yeast than in A. suboxydans.  相似文献   

8.
Mitochondria from bundle sheath cells of the phosphoenolpyruvate carboxykinase-type C4 species Urochloa panicoides were shown to have metabolic properties consistent with a role in C4 photosynthesis predicted from earlier studies. The rate of O2 uptake in response to added malate plus ADP was at least five times the activity observed with NADH, glycine, or succinate. With malate plus ADP the O2 uptake rate averaged about 150 nmol O2 min-1 mg-1 protein, equivalent to about 0.6 mumol min-1 mg-1 of extracted chlorophyll. About half of this activity was apparently phosphorylation-linked with ADP/O2 ratios of about 4. Studies with electron transport inhibitors suggested that about 65% of this malate oxidation is cytochrome oxidase-terminated with a minor component mediated via the alternative oxidase. These mitochondria supported rapid rates of pyruvate production from malate and this activity was also stimulated by ADP but blocked by inhibitors of electron transport. Adding oxaloacetate increased pyruvate production but inhibited O2 uptake. The results were consistent with the notion that in this subgroup of C4 species mitochondrial-located NAD malic enzyme contributes substantially to total C4 acid decarboxylation. This enzyme is apparently also the primary source of NADH necessary to generate the ATP required for phosphoenolpyruvate carboxykinase-mediated oxaloacetate decarboxylation.  相似文献   

9.
In the mussel Mytilus edulis, the activities of phosphoenolpyruvate car?ykinase (PEP-CK) and of malate dehydrogenase (MDH) are greater than those of pyruvate kinase (PK) and lactate dehydrogenase (LDH). The activities of PEP-CK are very low in the lobster (H. vulgaris.) and the ratio of MDH/LDH activities are 0·041 and 1·83 in the tail and the claw muscles respectively. Intracellular L-lactate and L-alanine concentrations suggest a different carbohydrate utilization in the tail and the claw muscle of the lobster. Consistent with this finding is the fact that L-lactate concentration is higher in the tail muscle than in the claw muscle; the opposite is true for L-alanine concentrations.  相似文献   

10.
A method for the determination of bicarbonate in buffer solutions between pH 7.5 and 8.75 and in stock solutions of NaHCO3 is described. The HCO-3 is reacted with phosphoenolpyruvate (PEP) in the presence of PEP carboxylase (EC 4.1.1.31) and the oxaloacetate formed reduced to malate by NADH in the reaction catalyzed by malate dehydrogenase (EC 1.1.1.37). The extent of oxidation of NADH is measured spectrophotometrically. Experiments using standard solutions show that 1 mol of NADH is oxidized per mol of HCO-3 added. The method was used to establish the precautions needed to prepare buffer solutions containing less than 1% of the bicarbonate which would be present in the same buffers in equilibrium with air.  相似文献   

11.
Isolated cell walls from horseradish contain NAD-specific malate dehydrogenase which is not released on treatment with 2 M NaCl. This enzyme catalyses a rapid reduction of oxalacetate. Its physiological role, however, is assumed to be the oxidation of malate, thus providing NADH as electron donor in the formation of H2O2, by a wall-bound peroxidase. In the presence of malate, NAD and Mn2+ ions, cell walls catalyse the synthesis of H2O2 which might be utilized in lignin formation. In analogy to the known malate-oxalacetate shuttles, the possibility is discussed that this cell wall-associated malate dehydrogenase is involved in the transport of cytoplasmic reducing equivalents through the plasmalemma into the cell wall.  相似文献   

12.
Rabbit, pigeon and rat liver mitochondria convert exogenous phosphoenolpyruvate and acetylcarnitine to citrate at rates of 14, 74 and 8 nmol/15 min/mg protein. Citrate formation is dependent on exogenous HCO3, is increased consistently by exogenous nucleotides (GDP, IDP, GTP, ADP, ATP) and inhibited strongly by 3-mercaptopicolinate and 1,2,3-benzenetricar☐ylate. Citrate is not made from pyruvate alone or combined with acetylcarnitine. Pigeon and rat liver mitochondria make large amounts of citrate from exogenous succinate, suggesting the presence of an endogenous source of acetyl units or a means of converting oxalacetate to acetyl units. Citrate synthesis from succinate by pigeon and rabbit mitochondria is increased significantly by exogenous acetylcarnitine. Pigeon and rat liver contain 80 and 15 times, respectively, more ATP:citrate lyase activity than does rabbit liver. Data suggest that mitochondrial phosphoenolpyruvate car☐ykinasein vivo could convert glycolysis-derived phosphoenolpyruvate to oxalacetate that, with acetyl CoA, could form citrate for export to support cytosolic lipogenesis as an activator of acetyl CoA car☐ylase, a carbon source via ATP:citrate lyase and NADPH via NADP: malate dehydrogenase or NADP: isocitrate dehydrogenase.  相似文献   

13.
Shieh YJ  Ku MS  Black CC 《Plant physiology》1982,69(4):776-780
Mesophyll cells and bundle sheath strands isolated from leaves of the C(4) plant Digitaria sanguinalis (L.) Scop. are capable of utilizing aspartate as a Hill oxidant. The resulting O(2) evolution upon illumination depends on the presence of 2-oxoglutarate, is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and is stimulated by methylamine. The rate of aspartate-dependent O(2) evolution with mesophyll cells was similar to those with phosphoenolpyruvate + CO(2) or with oxalacetate. Amino-oxyacetate, an inhibitor of aspartate aminotransferase, inhibited the aspartate-dependent O(2) evolution. Aspartate aminotransferase and NADP(+) -malate dehydrogenase are located in the mesophyll chloroplasts. These data suggest that aspartate is converted to oxalacetate via aspartate aminotransferase in the chloroplasts of mesophyll cells and that oxalacetate is subsequently reduced to malate, which is coupled to the photochemical evolution of O(2). This suggestion is further verified by the inhibition of phosphoenolpyruvate-dependent (14)CO(2) fixation by aspartate + 2-oxoglutarate, which presumably acts as oxalacetate and competes with phosphoenolpyruvate + CO(2) for NADPH. dl-Glyceraldehyde inhibited aspartate-dependent O(2) evolution in the bundle sheath strands but not in the mesophyll cells. The data indicate that aspartate may be converted to malate in both mesophyll and bundle sheath cells. In NADP(+) -malic enzyme species, aspartate may exist as a C(4)-dicarboxylic acid reservoir which can contribute to the C(4) cycle through its conversion to malate.  相似文献   

14.
In the Gramineae, a survey of species among the Brachiaria group of the subfamily Panicoideae, tribe Paniceae revealed that they are PEP car?ykinase containing species. This group includes the genera Brachiaria, Eriochloa and Urochloa. With the exception of the genus Panicum, these are the only genera within the Panicoideae found to contain PEP car?ykinase species. It is suggested that the PEP car?ykinase species of the genus Panicum, P. fasciculatum, P. maximum, P. molle and P. texanum, might be best placed in the Brachiaria group.  相似文献   

15.
Adenosine diphosphate sulphurylase activity in leaf tissue   总被引:6,自引:3,他引:3       下载免费PDF全文
1. A new method is described for the assay of ADP sulphurylase. The method involves sulphate-dependent [(32)P]P(i)-ADP exchange; the method is simpler, more sensitive and more direct than the method involving adenosine 5'-sulphatophosphate-dependent uptake of P(i). 2. ADP sulphurylase activity was demonstrated in crude extracts of leaf tissue from a range of plants. Crude spinach extract catalysed the sulphate-dependent synthesis of [(32)P]ADP from [(32)P]P(i); spinach extracts did not catalyse sulphate-dependent AMP-P(i), ADP-PP(i) or ATP-P(i) exchange under standard assay conditions. ADP sulphurylase activity in spinach leaf tissue was associated with chloroplasts and was liberated by sonication. 3. Some elementary kinetics of crude spinach leaf and purified yeast ADP sulphurylases in the standard assay are described; addition of Ba(2+) was necessary to minimize endogenous P(i)-ADP exchange of the yeast enzyme and crude extracts of winter-grown spinach. 4. Spinach leaf ADP sulphurylase was activated by Ba(2+) and Ca(2+); Mg(2+) was ineffective. The yeast enzyme was also activated by Ba(2+). The activity of both enzymes decreased with increasing ionic strength. 5. Purified yeast and spinach leaf ADP sulphurylases were sensitive to thiol-group reagents and fluoride. The pH optimum was 8. ATP inhibited sulphate-dependent P(i)-ADP exchange. Neither selenate nor molybdate inhibited sulphate-dependent P(i)-ADP exchange and crude spinach extracts did not catalyse selenate-dependent P(i)-ADP exchange. 6. The presence of ADP sulphurylase activity jeopardizes the enzymic synthesis of adenosine 5'-sulphatophosphate from ATP and sulphate with purified ATP sulphurylase and pyrophosphatase.  相似文献   

16.
Malate: A Possible Source of Error in the NAD Glutamate Dehydrogenase Assay   总被引:2,自引:0,他引:2  
The effects of externally induced metabolic perturbations areoften studied through changes of the enzyme activity patternsin crude plant extracts. From glutamate dehydrogenase (GDH)it is reported that environmental changes not only influencethe amount of the enzymatic activity, but also the ratio ofthe aminating to the deaminating activities (NADH/NAD+ ratio).Using crude cell extracts of suspension cultures of wheat (Triticumaestivum L. cv. Heines Koga II) we find evidence that the pretreatmentof the homogenate directly influences this ratio. Dialysis ofthese crude cell extracts resulted in a 70% loss of the NAD+activity, while the NADH activity remained unchanged. The deaminatingactivity in the dialysed extract could be completely restoredupon addition of a dialysable factor which was identified tobe malate. The interference of malate with the glutamate dehydrogenasereaction is caused through the action of malate dehydrogenaseand glutamate oxaloacetate transaminase which are both presentin high activities in the extracts. Only in exhaustively dialysedcell extracts can the proper deaminating GDH activity be determined.The results are discussed in the light of the controversialreports on the variable ratio of the NADH/NAD+ activity of GDH. Key words: Glutamate dehydrogenase, malate, NADH/NAD+, activity, Triticum aestivum  相似文献   

17.
Electrophoretically homogeneous phosphoenolpyruvate carboxykinase (EC 4.1.1.49) from Saccharomyces cerevisiae was obtained in high yields by means of a two-step purification procedure consisting of ion-exchange chromatography and affinity chromatography on adenosine 5'-monophosphate-Sepharose 4B. In the latter step the binding of the enzyme to the resin specifically required the presence of Mn2+. The enzyme was eluted when Mn2+ was removed by addition of ethylenediaminetetraacetate to the elution buffer. Homogeneity, molecular weight, and subunit composition of phosphoenolpyruvate carboxykinase were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration. A factor which caused an underestimation of the enzyme activity in crude extracts was identified as adenylate kinase. Finally, a method is proposed for the enzymatic assay of bicarbonate using a purified phosphoenolpyruvate carboxykinase preparation.  相似文献   

18.
Polynucleotide phosphorylase is a prokaryotic enzyme that catalyzes phosphorolysis of polynucleotides with release of nucleotide diphosphates. By taking advantage of this property, we developed a photometric assay for inorganic phosphate. In the presence of polyadenylic acid, phosphate is converted into adenosine 5'-diphosphate (ADP) by this enzyme. ADP then reacts with phosphoenolpyruvate in a pyruvate kinase-catalyzed reaction, thus giving rise to adenosine 5'-triphosphate and pyruvate. Finally, pyruvate oxidizes reduced nicotinamide adenine dinucleotide (NADH) through the action of L-lactate dehydrogenase, with concomitant decrease in absorbance at 340 nm. As expected, in this detection system 1 mol of NADH was oxidized per mole of phosphate. The assay showed an excellent reproducibility, as the standard deviations never exceeded 5%. It also was shown to be unaffected by several compounds that are regarded as major interferents of the traditional colorimetric assays. Absence of interference was also demonstrated when determining phosphate content in different biological samples, such as human serum and perchloric acid extracts from Escherichia coli, yeast, and bovine liver. An E. coli strain overexpressing His-tagged polynucleotide phosphorylase developed in our laboratories allowed quick and straightforward purification of enzyme, making the assay feasible and convenient. Since all other reagents required are inexpensive, the assay represents a cheaper alternative to commercially available phosphate assay kits.  相似文献   

19.
A method was developed for the purification of phosphoenolpyruvate carboxylase from darkened maize leaves so that the enzyme retained its sensitivity to inhibition by malate. The procedure depended on the prevention of proteolysis by the inclusion of chymostatin in the buffers used during the purification. The purified enzyme was indistinguishable from that in crude extracts as judged by native polyacrylamide-gel electrophoresis. SDS/polyacrylamide-gel electrophoresis followed by immunoblotting, and Superose 6 gel filtration. Gel-filtration studies showed that the purified enzyme and the enzyme in extracts of darkened or illuminated leaves showed a concentration-dependent dissociation of tetrameric into dimeric forms. Purified phosphoenolpyruvate carboxylase and enzyme in crude extracts from darkened leaves were equally sensitive to inhibition by malate (Ki approx. 0.30 mM) under conditions where it existed in the tetrameric or dimeric forms, but the enzyme in crude extracts from illuminated leaves was less sensitive to malate inhibition (Ki approx. 0.95 mM) whether it was present as a tetramer or as a dimer. It is concluded that changes in the oligomerization state of phosphoenolpyruvate carboxylase are not directly involved in its regulation by light.  相似文献   

20.
The phytotoxin fusicoccin (FC) causes rapid synthesis of malate in coleoptile tissues, presumably via phosphoenolpyruvate (PEP) carboxylase coupled with malate dehydrogenase. The possibility that FC directly affects PEP carboxylase in Avena sativa L. and Zea mays L. coleoptiles was studied and rejected. The activity of this enzyme is unaffected by FC whether FC is added in vitro or a pretreatment to the live material. FC does not change the sensitivity of the enzyme to bicarbonate or malate. The activity of FC, instead, appears to be indirect. The pH sensitivity of PEP carboxylase is such that its activity, and thus the rate of malate synthesis, may be enhanced by an increase in cytoplasmic pH accompanying FC-induced H+ excretion. Since the enzyme is also particularily sensitive to bicarbonate levels, malate synthesis may also be enhanced by FC-induced uptake or generation of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号