首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire histories were compared between the south-western United States and northern Patagonia, Argentina using both documentary records (1914–87 and 1938–96, respectively) and tree-ring reconstructions over the past several centuries. The two regions share similar fire–climate relationships and similar relationships of climatic anomalies to the El Niño–Southern Oscillation (ENSO). In both regions, El Niño events coincide with above-average cool season precipitation and increased moisture availability to plants during the growing season. Conversely, La Niña events correspond with drought conditions. Monthly patterns of ENSO indicators (southern oscillation indices and tropical Pacific sea surface temperatures) preceding years of exceptionally widespread fires are highly similar in both regions during the 20th century. Major fire years tend to follow the switching from El Niño to La Niña conditions. El Niño conditions enhance the production of fine fuels, which when desiccated by La Niña conditions create conditions for widespread wildfires. Decadal-scale patterns of fire occurrence since the mid-17th century are highly similar in both regions. A period of decreased fire occurrence in both regions from c. 1780–1830 coincides with decreased amplitude and/or frequency of ENSO events. The interhemispheric synchrony of fire regimes in these two distant regions is tentatively interpreted to be a response to decadal-scale changes in ENSO activity. The ENSO–fire relationships of the south-western USA and northern Patagonia document the importance of high-frequency climatic variation to fire hazard. Thus, in addition to long-term trends in mean climatic conditions, multi-decadal scale changes in year-to-year variability need to be considered in assessments of the potential influence of climatic change on fire regimes.  相似文献   

2.
To enhance understanding of how climate and humans influenced historical fire occurrence in the montane forests of Jasper National Park, we crossdated fire-scar and tree age samples from 172 plots. We tested effects of drought and climatic variation driven by the El Niño-Southern Oscillation (ENSO) and Pacific North American (PNA) pattern on fire occurrence. We also tested whether local droughts were associated with ENSO, PNA, Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation. We used a combination of instrumental and proxy-climate records to test whether climatic variation explained the absence of fire scars in our study area during the 20th century. From 1646 to 1915, 18 fires burned mainly during drier than average years. Drought years, but not fire years, were associated with positive ENSO and PNA indices, corresponding to warmer conditions with reduced snowpacks. Fire frequency varied through time, although no fire scars have formed since 1915. Potential recording trees present at all plots and climate conducive to fire over multiple years provide evidence that human influences superseded climatic variation to explain the lack of fire scars during the 20th century. Fire suppression significantly altered the fire regime after the formation of Jasper National Park, justifying the ongoing mechanical fuel treatments, prescribed and managed wildfires to improve forest resilience to climate change.  相似文献   

3.
Veblen  Thomas T.  Kitzberger  Thomas 《Plant Ecology》2002,163(2):187-207
Fire history was compared between the Colorado Front Range (U.S.A.) and northern Patagonia (Argentina) by dating fire-scars on 525 Pinus ponderosa and 418 Austrocedrus chilensis, respectively, and determining fire weather on the basis of instrumental and tree-ring proxy records of climatic variation. Years of above average moisture availability preceding fire years, rather than drought alone, is conducive to years of widespread fire in the Colorado Front Range and the northern Patagonian study areas. Above-average precipitation promotes fire by enhancing the growth of herbaceous plants which increases the quantity of fine fuels during the fire season a few years later. The short-term variability in moisture availability that is conducive to widespread burning is strongly related to El Niño Southern Oscillation (ENSO) activity. The warm (El Niño) phase of ENSO is associated with greater moisture availability during the spring in both regions which leads to peaks in fire occurrence several years after El Niño events. The warmer and drier springs associated with la Niña events exacerbate the drying of fuels so that fire years commonly coincide with La Niña events. In both regions, there was a dramatic decline in fire occurrence after the early 1900s due to a decline in intentionally set fires by Native Americans and European settlers, fuel reduction by livestock grazing, and increasingly effective organized fire suppression activities after the 1920s. In both regions there was a marked increase in fire frequency during the mid-and late-19th centuries which coincides with increased ignitions by Native Americans and/or European settlers. However, year-to-year variability in ring widths of Pinus ponderosa and Austrocedrus chilensis also increased from relatively low values in the late 1700s and early 1800s to peaks in the 1850s and 1860s. This implies frequent alternation of years of above and below average moisture availability during the mid-19th century when the frequencies of major fire years rise. The high correlation of tree-growth variability betweem the two regions implies a strong inter-hemispheric variation in climatic variability at a centennial time scale which closely parallels a variety of proxy records of ENSO activity. Based on the relationship of fire and ENSO events documented in the current study, this long-term trend in ENSO activity probably contributed to the mid- and late-19th century increase in fire spread in both regions. These similar trends in fire occurrence have contributed to similar patterns of forest structures, forest health, and current hazard of catastrophic wildfire in the Colorado Front Range and northern Patagonia.  相似文献   

4.
Trophic regulation models suggest that the magnitude of herbivory and predation (top-down forces) should vary predictably with habitat productivity. Theory also indicates that temporal abiotic variation and within-trophic level heterogeneity both affect trophic dynamics, but few studies addressed how these factors interact over broad-scale environmental gradients. Here we document herbivory from leaf-feeding insects along a natural rainfall/productivity gradient in Nothofagus pumilio forests of northern Patagonia, Argentina, and evaluate the impact of insectivorous birds on foliar damage experienced by tree saplings at each end of the gradient. The study ran over three years (1997–2000) comprising a severe drought (1998–1999), which allowed us to test how climatic events alter top-down forces. Foliar damage tended to increase towards the xeric, least productive forests. However, we found a predictable change of insect guild prevalence across the forest gradient. Leaf miners accounted for the greater damage recorded in xeric sites, whereas leaf chewers dominated in the more humid and productive forests. Interannual folivory patterns depended strongly on the feeding guild and forest site. Whereas leaf-miner damage decreased during the drought in xeric sites, chewer damage increased after the drought in the wettest site. Excluding birds did not affect leaf damage from miners, but generally increased chewer herbivory on hydric and xeric forest saplings. Indirect effects elicited by bird exclusion became most significant after the drought, when total folivory levels were higher. Thus, interannual abiotic heterogeneity markedly influenced the amount of folivory and strength of top-down control observed across the forest gradient. Moreover, our results suggest that spatial turnovers between major feeding guilds may need be considered to predict the dynamics of insect herbivory along environmental gradients.  相似文献   

5.
Aim The goal of this study was to understand better the role of interannual and interdecadal climatic variation on local pre‐EuroAmerican settlement fire regimes in fire‐prone Jeffrey pine (Pinus jeffreyi Grev. & Balf.) dominated forests in the northern Sierra Nevada Mountains. Location Our study was conducted in a 6000‐ha area of contiguous mixed Jeffrey pine‐white fir (Abies concolor Gordon & Glend.) forest on the western slope of the Carson Range on the eastern shore of Lake Tahoe, Nevada. Methods Pre‐EuroAmerican settlement fire regimes (i.e. frequency, return interval, extent, season) were reconstructed in eight contiguous watersheds for a 200‐year period (1650–1850) from fire scars preserved in the annual growth rings of nineteenth century cut stumps and recently dead pre‐settlement Jeffrey pine trees. Superposed epoch analysis (SEA) and correlation analysis were used to examine relationships between tree ring‐based reconstructions of the Palmer Drought Severity Index (PDSI), Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO) and pre‐EuroAmerican fire regimes in order to assess the influence of drought and equatorial and north Pacific teleconnections on fire occurrence and fire extent. Results For the entire period of record (1650–1850), wet conditions were characteristic of years without fires. In contrast, fire years were associated with drought. Drought intensity also influenced fire extent and the most widespread fires occurred in the driest years. Years with widespread fires were also preceded by wet conditions 3 years before the fire. Widespread fires were also associated with phase changes of the PDO, with the most widespread burns occurring when the phase changed from warm (positive) to cold (negative) conditions. Annual SOI and fire frequency or extent were not associated in our study. At decadal time scales, burning was more widespread during decades that were dryer and characterized by La Niña and negative PDO conditions. Interannual and interdecadal fire–climate relationships were not stable over time. From 1700 to 1775 there was no interannual relationship between drought, PDO, and fire frequency or extent. However, from 1775 to 1850, widespread fires were associated with dry years preceded by wet years. This period also had the strongest association between fire extent and the PDO. In contrast, fire–climate associations at interdecadal time scales were stronger in the earlier period than in the later period. The change from strong interdecadal to strong interannual climate influence was associated with a breakdown in decadal scale constructive relationships between PDO and SOI. Main conclusions Climate strongly influenced pre‐settlement pine forest fire regimes in northern Sierra Nevada. Both interannual and interdecadal climatic variation regulated conditions conducive to fire activity, and longer term changes in fire frequency and extent correspond with climate‐mediated changes observed in both the northern and southern hemispheres. The sensitivity of fire regimes to shifts in modes of climatic variability suggests that climate was a key regulator of pine forest ecosystem structure and dynamics before EuroAmerican settlement. An understanding of pre‐EuroAmerican fire–climate relationships may provide useful insights into how fire activity in contemporary forests may respond to future climatic variation.  相似文献   

6.
Ben-Shahar  Raphael 《Plant Ecology》1998,136(2):189-189
Fluctuations in densities of woody plant species were monitored in plots within three northern Botswana woodland types subjected to elephant damage and burning. Woodlands dominated by Baikiaea plurijuga and Colophospermum mopane sustained significant changes occurring on an annual basis, whereas Acacia erioloba plots maintained a typical structure. The structure of A. erioloba woodlands appeared to be influenced by factors other than elephants and the occurrence of fire. Woodlands dominated by C. mopane plants were subjected to obtrusive elephant damage, although the densities of tall trees remained largely unchanged. The effects of fire were most prominent in B. plurijuga woodlands. Tree densities declined consistently and plants of lower height classes, such as shrubs and seedlings increased in densities in areas subjected to a high occurrence of fire.  相似文献   

7.
Ongoing climate change has induced modification in the frequency and intensity of extreme climatic events, with consequent impact on tree and forest growth resilience. Araucaria araucana is an endangered Patagonian conifer, which provides several ecosystem services to local human societies and plays fundamental ecological roles in natural communities. These woodlands have historically suffered different types of anthropogenic disturbance, such as fire, logging and grazing, nevertheless the species resilience to extreme drought events remains still poorly understood. To fill this gap of knowledge, we applied dendrochronological methods to several A. araucana stands distributed along a steep bioclimatic gradient in order to reconstruct resilience capacity, in term of stem growth resistance and recovery, to three successive extreme spring-early summer droughts which occurred during the 20th century. Results showed an increase in the species recovery along the considered dry spells, whereas no clear trend emerged for resistance, suggesting no cumulative effect of drought upon resilience. Both resistance and recovery presented different values depending on bioclimatic settings, being xeric stands more sensitive to extreme episodes with respect to mesic woodlands, particularly during the more recent drought event when trees growing in drier environments were not able to reach pre-drought stem growth rates. Tree-level characteristics, such as age and growth trends prior to drought, modulated the species resilience, suggesting that future dry spells would possibly induce shifts in population dynamics, and furthermore be detrimental for fast-growing trees. Our analysis highlighted the response of a key Patagonian tree species to extreme drought events, providing bioclimatic-specific useful information for conservation plans of this natural resource.  相似文献   

8.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.  相似文献   

9.
Sustained elephant browsing and intense burning could result in the loss of woodlands under conditions where elephant densities are high, such as in northern Botswana. Three woodland types dominated by Acacia erioloba, Baikiaea plurijuga and Colophospermum mopane were monitored in plots and contemporary recruitment rates of woody plants were compared with the associated local elephant densities and fire occurrences. Woodland types differed with respect to structure, extent of elephant damage and the occurrence of fire. Canonical correlations indicated that high extent of fire damage and high elephant densities did not covary within the woodland types investigated. Low tree densities in some woodland types were associated with high elephant densities and new elephant damage to plants increased with high elephant densities during the dry season. Plots with an apparent high fire frequency had lower tree densities and higher cover abundance of shrubs and seedlings.The annual rates of tree recruitment/loss in each woodland type were estimated through a model based on observed seedling recruitment, mortality and reversal to lower height classes due to combinations of fire occurrence and elephant browsing. The model suggested that elephants induce tree loss in woodlands dominated by plant species which are principal food sources. Fire however, seems to have a widespread effect across woodlands which could result in extensive tree loss.  相似文献   

10.
Fire is a natural disturbance in savannas, and defines vegetation physiognomy and structure, often influencing species diversity. Fire activity is determined by a wide range of factors, including long and short term climatic conditions, climate seasonality, wind speed and direction, topography, and fuel biomass. In Brazil, fire shapes the structure and composition of cerrado savannas, and the impact of fire on vegetation dynamics is well explored, but the drivers of variation in fire disturbance across landscapes and over time are still poorly understood. We reconstructed 31 years of fire occurrence history in the Serra do Cipó region, a highly-diverse cerrado landscape, located in the southern portion of the Espinhaço mountain range, state of Minas Gerais, Southeastern Brazil. We mapped burn scars using a time series of Landsat satellite images from 1984 to 2014. Our questions were 1) How does fire occurrence vary in time and space across the Serra do Cipó cerrado landscape? 2) Which climatic drivers may explain the spatial and inter-annual variation in fire occurrence on this landscape? 3) Is fire occurrence in this cerrado landscape moisture-limited or fuel-limited? We evaluated the inter-annual variation and distribution of burned areas, and used linear models to explain this variation in terms of rainfall amount (determinant of fuel load production), seasonal rainfall distribution (determinant of dry fuel availability), abnormality of precipitation (Standardized Precipitation Index – SPI), and vegetation type (Enhanced Vegetation Index – EVI). Contrary to our expectations, annual rainfall volume was weakly and negatively correlated with burned area, and the strongest predictor of burned area was drought during the ignition season. The length of the dry season and the distribution of rain along the season determined ignition probability, increasing fire occurrence during the driest periods. We conclude that the mountain cerrado vegetation at Serra do Cipó has a moisture-dependent fire regime, in contrast to the fuel-dependent fire regimes described for African savannas. These findings imply that savannas at different continents may have different recovery and resilience capabilities when subjected to changes in the fire regime, caused by direct anthropogenic activities or indirectly through climatic changes. The possible effects of these changes on cerrado landscapes are still unknown, and future studies should investigate if currently observed fire regimes have positive or negative impacts on vegetation diversity, recovery, resilience and phenology, thus helping managers to include fire management as conservation measure.  相似文献   

11.
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore projections of drought-induced mortality under future climatic conditions remain uncertain. For a subalpine forest landscape in the Rocky Mountains of northern Colorado (USA), we quantified lag effects of drought on mortality of Engelmann spruce Picea engelmannii , subalpine fir Abies lasiocarpa , and lodgepole pine Pinus contorta . For the period 1910–2004, we related death dates of 164 crossdated dead trees to early-season and late-season droughts. Following early-season droughts, spruce mortality increased over five years and fir mortality increased sharply over 11 years. Following late-season droughts, spruce showed a small increase in mortality within one year, whereas fir showed a consistent period of increased mortality over two years. Pine mortality was not affected by drought. Low pre-drought radial growth rates predisposed spruce and fir to drought-related mortality. Spruce and fir trees that died during a recent drought (2000–2004) had significantly lower pre-drought growth rates than live neighbour trees. Overall, we found large interspecific differences in drought-related mortality with fir showing the strongest effect followed by spruce and pine. This direct influence of climatic variability on differential tree mortality has the potential for driving large-scale changes in subalpine forests of the Rocky Mountains.  相似文献   

12.
Most of the dendrochronological efforts in northern Patagonia have been invested in long-lived conifer species, whereas several broadleaf species have received less attention. This is the case for Nothofagus dombeyi, a dominant species in the mesic temperate and rainforests in the region. The aim of this study was to develop the first tree-ring chronologies for N. dombeyi in northern Patagonian and contribute to the future dendroecological and dendroclimatological studies in the region. Using standard dendrochronological techniques, six tree-ring-width chronologies were obtained encompassing the east–west precipitation gradient of this species in the Argentinean sector of the northern Patagonian Andes. Chronology statistics indicated that N. dombeyi records are highly reliable and a good source of information on tree-growth variability in the region. Stands located in the xeric sectors of the gradient showed higher inter-site variability. Also, results presented here showed that N. dombeyi has a large potential for the study of climatic variability in northern Patagonia.  相似文献   

13.
Late-Holocene evolutionary and ecological response of pocket gophers ( Thomomys talpoides ) and other species to climatic change is documented by mammalian fossils from Lamar Cave, a palaeontological site in northern Yellowstone National Park. Pocket gophers illustrate ecological sensitivity to a series of mesic to xeric climatic excursions in the sagebrush-grassland ecotone during the last 3200 years, increasing in abundance during mesic intervals, and declining in abundance during xeric intervals. Four other small mammal taxa (Microtus sp., Peromyscus maniculatus, Neotoma cinerea and Spermophilus armatus) also show response to climatic change, increasing or decreasing in abundance in accordance with their preferred habitat requirements. To determine evolutionary response to climate, two craniodental characters for the northern pocket gopher ( Thomomys talpoides ) are investigated in modern representatives within a 400 km radius of Lamar Cave and then tracked through the time spanned by the fossils. One morphologic character shows that variation in body size, primarily a plastic response to the environment, demonstrates few taxonomically consistent patterns of geographic variation across 39 modern localities. In contrast, the other character indicates genetic relatedness within subspecies. Stasis in the genetically controlled character indicates that the same subspecies of pocket gopher ( T. talpoides tenellus ) has occupied northern Yellowstone for at least 3200 years. However, T. t. tenellus does show plastic response to climatic change because pocket gophers during the Medieval Warm Period were smaller than at any other time spanned by the deposit.  相似文献   

14.
Macaronesian laurel forests are the only remnants of a subtropical palaeoecosystem dominant during the Tertiary in Europe and northern Africa. These biodiverse ecosystems are restricted to cloudy and temperate insular environments in the North Atlantic Ocean. Due to their reduced distribution area, these forests are particularly vulnerable to anthropogenic disturbances and changes in climatic conditions. The assessment of laurel forest trees’ response to climate variation by dendrochronological methods is limited because it was assumed that the lack of marked seasonality would prevent the formation of distinct annual tree rings. The aims of this study were to identify the presence of annual growth rings and to assess the dendrochronological potential of the most representative tree species from laurel forests in Tenerife, Canary Islands. We sampled increment cores from 498 trees of 12 species in two well-preserved forests in Tenerife Island. We evaluated tree-ring boundary distinctness, dating potential, and sensitivity of tree-ring growth to climate and, particularly, to drought occurrence. Eight species showed clear tree-ring boundaries, but synchronic annual tree rings and robust tree-ring chronologies were only obtained for Laurus novocanariensis, Ilex perado subsp. platyphylla, Persea indica and Picconia excelsa, a third of the studied species. Tree-ring width depended on water balance and drought occurrence, showing sharp reductions in growth in the face of decreased water availability, a response that was consistent among species and sites. Inter-annual tree-ring width variation was directly dependent on rainfall input in the humid period, from previous October to current April. The four negative pointer years 1995, 1999, 2008 and 2012 corresponded to severe drought events in the study area. This study gives the first assessment of dendrochronological potential and tree-ring climate sensitivity of tree species from the Tenerife laurel forest, which opens new research avenues for dendroecological studies in Macaronesian laurel forests.  相似文献   

15.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

16.
The interannual distribution of early life stages of Pacific hake Merluccius productus , within the southern part of the California Current (32–23° N) from 1951 to 2001, was examined to describe the relationship between spawning habitat and environmental conditions. Mean annual abundance was affected by different factors along the west coast of the Baja California Peninsula. In the northern areas (Ensenada and Punta Baja), reduced abundance of larvae coincided with the El Niño and a North Pacific Ocean climatic regime shift, but in the southern areas (San Ignacio to Bahía Magdalena), the drastic reductions suggested a fishery effect for large adults of the coastal migratory population, starting in 1966. Two spawning stocks, coastal and dwarf, were evident in comparisons of latitudinal differences in occurrence of early stages and differences in temperature preferences that seemed to break at Punta Eugenia.  相似文献   

17.
An understanding of the effects of climate on fuel is required to predict future changes to fire. We explored the climatic determinants of variations in surface fine fuel parameters across forests (dry and wet sclerophyll plus rainforest) and grassy woodlands of south‐eastern Australia. Influences of vegetation type and climate on fuel were examined through statistical modelling for estimates of litterfall, decomposition and steady state fine litter fuel load obtained from published studies. Strong relationships were found between climate, vegetation type and all three litter parameters. Litterfall was positively related to mean annual rainfall and mean annual temperature across all vegetation types. Decomposition was both negatively and positively related to mean annual temperature at low and high levels of warm‐season rainfall respectively. Steady state surface fine fuel load was generally, negatively related to mean annual temperature but mean annual rainfall had divergent effects dependent on vegetation type: i.e. positive effect in low productivity dry sclerophyll forests and grassy woodlands versus negative effect in high productivity wet sclerophyll forests and rainforests. The species composition of the vegetation types may have influenced decomposition and steady state fuel load responses in interaction with climate: e.g. lower decomposition rates in the low productivity vegetation types that occupied drier environments may be partially due to the predominance of species with sclerophyllous leaves. The results indicate that uncertain and highly variable future trends in precipitation may have a crucial role in determining the magnitude and direction of change in surface fine fuel load across south‐eastern Australia.  相似文献   

18.
Aim Patterns of fire regimes across Australia exhibit biogeographic variation in response to four processes. Variations in area burned and fire frequency result from differences in the rates of ‘switching’ of biomass growth, availability to burn, fire weather and ignition. Therefore differing processes limit fire (i.e. the lowest rate of switching) in differing ecosystems. Current and future trends in fire frequency were explored on this basis. Location Case studies of forests (cool temperate to tropical) and woodlands (temperate to arid) were examined. These represent a broad range of Australian biomes and current fire regimes. Methods Information on the four processes was applied to each case study and the potential minimum length of interfire interval was predicted and compared to current trends. The potential effects of global change on the processes were then assessed and future trends in fire regimes were predicted. Results Variations in fire regimes are primarily related to fluctuations in available moisture and dominance by either woody or herbaceous plant cover. Fire in woodland communities (dry climates) is limited by growth of herbaceous fuels (biomass), whereas in forests (wet climates) limitation is by fuel moisture (availability to burn) and fire weather. Increasing dryness in woodland communities will decrease potential fire frequency, while the opposite applies in forests. In the tropics, both forms of limitation are weak due to the annual wet/dry climate. Future change may therefore be constrained. Main conclusions Increasing dryness may diminish fire activity over much of Australia (dominance of dry woodlands), though increases may occur in temperate forests. Elevated CO2 effects may confound or reinforce these trends. The prognosis for the future fire regime in Australia is therefore uncertain.  相似文献   

19.
Episodic tree mortality can be caused by various reasons. This study describes climate-driven tree mortality and tree growth in the Black Forest mountain range in Germany. It is based on a 68-year consistent data series describing the annual mortality of all trees growing in a forest area of almost 250 thousand ha. The study excludes mortality caused by storm, snow and ice, and fire. The sequence of the remaining mortality, the so-called “desiccated trees,” is analyzed and compared with the sequence of the climatic water balance during the growing season and the annual radial growth of Norway spruce in the Black Forest. The annual radial growth series covers 121 years and the climatic water balance series 140 years. These unique time series enable a quantitative assessment of multidecadal drought and heat impacts on growth and mortality of forest trees on a regional spatial scale. Data compiled here suggest that the mortality of desiccated trees in the Black Forest during the last 68 years is driven by the climatic water balance. Decreasing climatic water balance coincided with an increase in tree mortality and growth decline. Consecutive hot and dry summers enhance mortality and growth decline as a consequence of drought legacies lasting several years. The sensitivity of tree growth and mortality to changes in the climatic water balance increases with the decreasing trend of the climatic water balance. The findings identify the climatic water balance as the main driver of mortality and growth variation during the 68-year observation period on a landscape-scale including a variety of different sites. They suggest that bark beetle population dynamics modify mortality rates. They as well provide evidence that the mortality during the last 140 years never was as high as in the most recent years.  相似文献   

20.
We employed DNA sequence variation at two mitochondrial (control region, COI) regions from 212 individuals of Galaxias platei (Pisces, Galaxiidae) collected throughout Patagonia (25 lakes/rivers) to examine how Andean orogeny and the climatic cycles throughout the Quaternary affected the genetic diversity and phylogeography of this species. Phylogenetic analyses revealed four deep genealogical lineages which likely represent the initial division of G. platei into eastern and western lineages by Andean uplift, followed by further subdivision of each lineage into separate glacial refugia by repeated Pleistocene glacial cycles. West of the Andes, refugia were likely restricted to the northern region of Patagonia with small relicts in the south, whereas eastern refugia appear to have been much larger and widespread, consisting of separate northern and southern regions that collectively spanned most of Argentinean Patagonia. The retreat of glacial ice following the last glacial maximum allowed re‐colonization of central Chile from nonlocal refugia from the north and east, representing a region of secondary contact between all four glacial lineages. Northwestern glacial relicts likely followed pro‐glacial lakes into central Chilean Patagonia, whereas catastrophic changes in drainage direction (Atlantic → Pacific) for several eastern palaeolakes were the likely avenues for invasions from the east. These mechanisms, combined with evidence for recent, rapid and widespread population growth could explain the extensive contemporary distribution of G. platei throughout Patagonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号