首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Highly active antiretroviral therapy (HAART) can suppress HIV-1 replication and normalize the chronic immune activation associated with infection, but restoration of naïve CD4+ T cell populations is slow and usually incomplete for reasons that have yet to be determined. We tested the hypothesis that damage to the lymphoid tissue (LT) fibroblastic reticular cell (FRC) network contributes to naïve T cell loss in HIV-1 infection by restricting access to critical factors required for T cell survival. We show that collagen deposition and progressive loss of the FRC network in LTs prior to treatment restrict both access to and a major source of the survival factor interleukin-7 (IL-7). As a consequence, apoptosis within naïve T cell populations increases significantly, resulting in progressive depletion of both naïve CD4+ and CD8+ T cell populations. We further show that the extent of loss of the FRC network and collagen deposition predict the extent of restoration of the naïve T cell population after 6 month of HAART, and that restoration of FRC networks correlates with the stage of disease at which the therapy is initiated. Because restoration of the FRC network and reconstitution of naïve T cell populations are only optimal when therapy is initiated in the early/acute stage of infection, our findings strongly suggest that HAART should be initiated as soon as possible. Moreover, our findings also point to the potential use of adjunctive anti-fibrotic therapies to avert or moderate the pathological consequences of LT fibrosis, thereby improving immune reconstitution.  相似文献   

2.
Khan O  Headley M  Gerard A  Wei W  Liu L  Krummel MF 《PloS one》2011,6(11):e26138
The priming of immune T cells by their interaction with dendritic cells (DCs) in lymph nodes (LN), one of the early events in productive adaptive immune responses, occurs on a scaffold of lymphoid stromal cells, which have largely been seen as support cells or sources of chemokines and homeostatic growth factors. Here we show that murine fibroblastic reticular cells (FRCs), isolated from LN of B6 mice, play a more direct role in the immune response by sensing and modulating T cell activation through their upregulation of inducible nitric oxide synthase (iNOS) in response to early T cell IFNγ production. Stromal iNOS, which only functions in very close proximity, attenuates responses to inflammatory DC immunization but not to other priming regimens and preferentially affects Th1 cells rather than Th2. The resultant nitric oxide production does not affect T cell-DC coupling or initial calcium signaling, but restricts homotypic T cell clustering, cell cycle progression, and proliferation. Stromal feedback inhibition thus provides basal attenuation of T cell responses, particularly those characterized by strong local inflammatory cues.  相似文献   

3.
Secondary lymphoid organs (SLO), such as lymph nodes and the spleen, display a complex micro-architecture. In the T cell zone the micro-architecture is provided by a network of fibroblastic reticular cells (FRC) and their filaments. The FRC network is thought to enhance the interaction between immune cells and their cognate antigen. However, the effect of the FRC network on cell interaction cannot be quantified to date because of limitations in immunological methodology. We use computational models to study the influence of different densities of FRC networks on the probability that two cells meet. We developed a 3D cellular automaton model to simulate cell movements and interactions along the FRC network inside lymphatic tissue. We show that the FRC network density has only a small effect on the probability of a cell to come into contact with a static or motile target. However, damage caused by a disruption of the FRC network is greatest at FRC densities corresponding to densities observed in the spleen of naïve mice. Our analysis suggests that the FRC network as a guiding structure for moving T cells has only a minor effect on the probability to find a corresponding dendritic cell. We propose alternative hypotheses by which the FRC network might influence the functionality of immune responses in a more significant way.  相似文献   

4.
Lymph node blood vessels play important roles in the support and trafficking of immune cells. The blood vasculature is a component of the vascular-stromal compartment that also includes the lymphatic vasculature and fibroblastic reticular cells (FRCs). During immune responses as lymph nodes swell, the blood vasculature undergoes a rapid proliferative growth that is initially dependent on CD11c(+) cells and vascular endothelial growth factor (VEGF) but is independent of lymphocytes. The lymphatic vasculature grows with similar kinetics and VEGF dependence, suggesting coregulation of blood and lymphatic vascular growth, but lymphatic growth has been shown to be B cell dependent. In this article, we show that blood vascular, lymphatic, and FRC growth are coordinately regulated and identify two distinct phases of vascular-stromal growth--an initiation phase, characterized by upregulated vascular-stromal proliferation, and a subsequent expansion phase. The initiation phase is CD11c(+) cell dependent and T/B cell independent, whereas the expansion phase is dependent on B and T cells together. Using CCR7(-/-) mice and selective depletion of migratory skin dendritic cells, we show that endogenous skin-derived dendritic cells are not important during the initiation phase and uncover a modest regulatory role for CCR7. Finally, we show that FRC VEGF expression is upregulated during initiation and that dendritic cells can stimulate increased fibroblastic VEGF, suggesting the scenario that lymph node-resident CD11c(+) cells orchestrate the initiation of blood and lymphatic vascular growth in part by stimulating FRCs to upregulate VEGF. These results illustrate how the lymph node microenvironment is shaped by the cells it supports.  相似文献   

5.
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.  相似文献   

6.
The presence or absence of CD4(+) T cell help can determine the direction of adaptive immune responses toward either cross-priming or cross-tolerance. It has been demonstrated that interactions of CD40-CD40 ligand can replace CD4(+) T cell help and enable dendritic cells to prime cytotoxic T cells. Here, we demonstrate that antitumor reactivity induced in regional lymph nodes (LNs) by s.c. injection of CD40 ligand (CD40L)-transduced tumor (MCA205 CD40L) showed far superior therapeutic efficacy against established brain tumors of a weakly immunogenic fibrosarcoma, MCA205, when adoptively transferred. Coinjection of apoptotic, but not necrotic parental tumor cells with CD40L-expressing tumor cells caused a strong synergistic induction of antitumor reactivity in tumor-draining LNs. Freshly isolated T cells from LNs immunized with apoptotic parental tumor cells and MCA205 CD40L were capable of mediating regression of the parental tumor in vivo. In contrast, T cells derived from LNs immunized without MCA205 CD40L required ex vivo anti-CD3/IL-2 activation to elicit therapeutic activity. On anti-CD3/IL-2 activation, cells from LNs immunized with MCA205 CD40L exhibited superior per cell antitumor reactivity. An in vitro depletion study revealed that either CD4(+) or CD8(+) T cells could mediate therapeutic efficacy but that the antitumor efficacy mediated by CD4(+) T cells was far superior. Cytosolic flow cytometric analyses indicated that priming of CD4(+) cells in LNs draining CD40L-expressing tumors was polarized to the Th1 type. This is the first report that fully potent antitumor CD4(+) T cell priming was promoted by s.c. injection of CD40L-transduced tumor in the presence of apoptotic tumor cells.  相似文献   

7.
Subcutaneous immunization delivers antigen (Ag) to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs). There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs) is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI), in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI.  相似文献   

8.
An effort was made to understand the role of the 57 kDa major antigenic fraction of Shigella outer membrane protein (OMP) in the presence of T-cell antigen receptor in activation of adaptive immune responses of the cell mediated immune (CMI) restored patients. The expression of HLA-DR/CD4 out of CD3+ T-cells was significantly dominant over the HLA-DR/CD8 and comparable to unstimulated cells of infected or healthy controls. CD4+ T-cell activation together with HLA-DR is associated with the expression of CD25+ (IL2Rα) for IL-2 growth factors with decreased IL-4 levels, required for maintaining the homeostasis of CD4+ T cell. Furthermore, the positive expression of the CD45 antigen is possibly required for acquiring the memory for CD4+ cells signals and facilitates the interaction with CD54 antigen. As a result, antigen-specific secondary signal is generated for B-cell activation to produce IgG2a and IgG2b. This suggests that antibody mediated-adaptive immune responses are generated due to anti-CD3 induced helper T-cell activity. The above mentioned findings reflect that the antigen alone might not exacerbate the selective T-cell responses. But these antigens in the presence of anti-CD3 antibody might help to elicit adaptive immune response via T-cell receptor (TCR) activation.  相似文献   

9.
10.
MKP-1 Is Necessary for T Cell Activation and Function   总被引:1,自引:0,他引:1  
MAPKs are evolutionarily conserved immune regulators. MAPK phosphatases (MKPs) that negatively regulate MAPK activities have recently emerged as critical players in both innate and adaptive immune responses. MKP-1, also known as DUSP1, was previously shown to negatively regulate innate immunity by inhibiting pro-inflammatory cytokine production. Here, we found that MKP-1 is necessary in T cell activation and function. MKP-1 deficiency in T cells impaired the activation, proliferation, and function of T cells in vitro, associated with enhanced activation of JNK and reduced NFATc1 translocation into the nucleus. Consistently, MKP-1−/− mice were defective in anti-influenza immunity in vivo and resistant to experimental autoimmune encephalomyelitis. Our results thus demonstrate that MKP-1 is a critical positive regulator of T cell activation and function and may be targeted in treatment of autoimmune diseases.  相似文献   

11.
Innate and adaptive immune cells work in concert to generate efficient protection at mucosal surface. Vaginal mucosa is an epithelial tissue that contains innate and adaptive immune effector cells. Our previous studies demonstrated that vaginal administration of Cholera toxin -based vaccines generate antigen-specific CD8 T cells through the stimulation of local dendritic cells (DC). Innate lymphoid cells (ILC) are a group of lymphocytes localized in epithelial tissues that have important immune functions against pathogens and in tissue homeostasis. Their contribution to vaccine-induced mucosal T cell responses is an important issue for the design of protective vaccines. We report here that the vaginal mucosa contains a heterogeneous population of NKp46+ ILC that includes conventional NK cells and ILC1-like cells. We show that vaginal NKp46+ ILC dampen vaccine-induced CD8 T cell responses generated after local immunization. Indeed, in vivo depletion of NKp46+ ILC with anti-NK1.1 antibody or NKG2D blockade increases the magnitude of vaginal OVA-specific CD8 T cells. Furthermore, such treatments also increase the number of DC in the vagina. NKG2D ligands being expressed by vaginal DC but not by CD8 T cells, these results support that NKp46+ ILC limit mucosal CD8 T cell responses indirectly through the NKG2D-dependent elimination of vaginal DC. Our data reveal an unappreciated role of NKp46+ ILC in the regulation of mucosal CD8 T cell responses.  相似文献   

12.
Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During infections, the network can suffer damage. A new study has now investigated the network’s structure in detail, using methods from graph theory. The study showed that the network is remarkably robust to damage: it can still support immune responses even when half of the reticular cells are destroyed. This is a further important example of how network connectivity achieves tolerance to failure, a property shared with other important biological and nonbiological networks.Lymph nodes are critical sites for immune cells to connect, exchange information, and initiate responses to foreign invaders. More than 90% of the cells in each lymph node—the T and B lymphocytes of the adaptive immune system—only reside there temporarily and are constantly moving around as they search for foreign substances (antigen). When there is no infection, T and B cells migrate within distinct regions. But lymph node architecture changes dramatically when antigen is found, and an immune response is mounted. New blood vessels grow and recruit vast numbers of lymphocytes from the blood circulation. Antigen-specific cells divide and mature into “effector” immune cells. The combination of these two processes—increased influx of cells from outside and proliferation within—can make a lymph node grow 10-fold within only a few days [1]. Accordingly, the structural backbone supporting lymph node function cannot be too rigid; otherwise, it would impede this rapid organ expansion. This structural backbone is provided by a network of fibroblastic reticular cells (FRCs) [2], which secrete a form of collagen (type III alpha 1) that produces reticular fibers—thin, threadlike structures with a diameter of less than 1 μm. Reticular fibers cross-link and form a spider web–like structure. The FRCs surrounding this structure form the reticular cell network (Fig 1), which was first observed in the 1930s [3]. Interestingly, experiments in which the FRCs were destroyed showed that the collagen fiber network remained intact [4].Open in a separate windowFig 1Structure of the reticular cell network.The reticular cell network is formed by fibroblastic reticular cells (FRCs) whose cell membranes ensheathe a core of collagen fibers that acts as a conduit system for the distribution of small molecules [5]. In most other tissues, collagen fibers instead reside outside cell membranes, where they form the extracellular matrix. Inset: graph structure representing the FRCs in the depicted network as “nodes” (circles) and the direct connections between them as “edges” (lines). Shape and length of the fibers are not represented in the graph.Reticular cell networks do not only support lymph node structure; they are also important players in the immune response. Small molecules from the tissue environment or from pathogens, such as viral protein fragments, can be distributed within the lymph node through the conduit system formed by the reticular fibers [5]. Some cytokines and chemokines that are vital for effective T cell migration—and the nitric oxide that inhibits T cell proliferation [6]—are even produced by the FRCs themselves. Moreover, the network is thought of as a “road system” for lymphocyte migration [7]: in 2006, a seminal study found that lymphocytes roaming through lymph nodes were in contact with network fibers most of the time [8]. A few years before, it had become possible to observe lymphocyte migration in vivo by means of two-photon microscopy [9]. Movies from these experiments strikingly demonstrated that individual cells were taking very different paths, engaging in what appeared to be a “random walk.” But these movies did not show the structures surrounding the migrating cells, which created an impression of motion in empty space. Appreciating the role of the reticular cell network in this pattern of motion [8] suggested that the complex cell trajectories reflect the architecture of the network along which the cells walk.Given its important functions, it is surprising how little we know about the structure of the reticular cell network—compared to, for instance, our wealth of knowledge on neuron connectivity in the brain. In part this is because the reticular cells are hard to visualize. In vivo techniques like two-photon imaging do not provide sufficient resolution to reliably capture the fine-threaded mesh. Instead, thin tissue sections are stained with fluorescent antibodies that bind to the reticular fibers and are imaged with high-resolution confocal microscopy to reveal the network structure. One study [10] applied this method to determine basic parameters such as branch length and the size of gaps between fibers. Here, we discuss a recent study by Novkovic et al. [11] that took a different approach to investigating properties of the reticular cell network structure: they applied methods from graph theory.Graph theory is a classic subject in mathematics that is often traced back to Leonhard Euler’s stroll through 18th-century Königsberg, Prussia. Euler could not find a circular route that crossed each of the city’s seven bridges exactly once, and wondered how he could prove that such a route does not exist. He realized that this problem could be phrased in terms of a simple diagram containing points (parts of the city) and lines between them (bridges). Further detail, such as the layout of city’s streets, was irrelevant. This was the birth of graph theory—the study of objects consisting of points (nodes) connected by lines (edges). Graph theory has diverse applications ranging from logistics to molecular biology. Since the beginning of this century, there has been a strong interest in applying graph theory to understand the structure of networks that occur in nature—including biological networks, such as neurons in the brain, and more recently, social networks like friendships on Facebook. Various mathematical models of network structures have been developed in an attempt to understand network properties that are relevant in different contexts, such as the speed at which information spreads or the amount of damage that a network can tolerate before breaking into disconnected parts. Three well-known network topologies are random, small-world, and scale-free networks (Box 1). Novkovic et al. modeled reticular cell networks as graphs by considering each FRC to be a node and the fiber connections between FRCs to be edges (Fig 1).

Box 1. Graph Theory and the Robustness of Real Networks

After the publication of several landmark papers on network topology at the end of the previous century, the science of complex networks has grown explosively. One of these papers described “small-world” networks [16] and demonstrated that several natural networks have the amazing property that the average length of shortest paths between arbitrary nodes is unexpectedly small (making it a “small world”), even if most of the network nodes are clustered (that is, when neighbors of neighbors tend to be neighbors). The Barabasi group published a series of papers describing “scale-free” networks [17,18] and demonstrated that scale-free networks are extremely robust to random deletions of nodes—the vast majority of the nodes can be deleted before the network falls apart [15]. In scale-free networks, the number of edges per node is distributed according to a power law, implying that most nodes have very few connections, and a few nodes are hubs having very many connections. Thus, the topology of complex networks can be scale-free, small-world, or neither, such as with random networks [19]. Novkovic et al. [11] describe the clustering of the edges of neighbors and the average shortest path–length between arbitrary nodes, finding that reticular cell networks have small-world properties. Whether or not these networks have scale-free properties is not explicitly examined in the paper, but given that they are embedded in a three-dimensional space, that they “already” lose functionality when about 50% of the FRCs are ablated, and that the number of connected protrusions per FRC is not distributed according to a power law (see the data underlying their Figure 2g), reticular cell networks are not likely to be scale-free. Thus, the enhanced robustness of reticular cell networks is most likely due to their high local connectivity: Networks lose functionality when they fall apart in disconnected components, and high clustering means that the graph is unlikely to split apart when a single node is removed, because the neighbors of that node tend to stay connected [14]. Additionally, since the reticular cell network has a spatial structure (unlike the internet or the Facebook social network), its high degree of clustering is probably due to the preferential attachment to nearby FRCs when the network develops, which agrees well with Novkovic et al.’s recent classification as a small-world network with lattice-like properties [11].Some virus infections are known to damage reticular cell networks [12], either through infection of the FRCs or as a bystander effect of inflammation. It is therefore important to understand to what extent the network structure is able to survive partial destruction. Novkovic et al. first approached this question by performing computer simulations, in which they randomly removed FRC nodes from the networks they had reconstructed from microscopy images. They found that they had to remove at least half of the nodes to break the network apart into disconnected parts. To study the effect of damage on the reticular cell network in vivo rather than in silico, Novkovic et al. used an experimental technique called conditional cell ablation. In this technique, a gene encoding the diphtheria toxin receptor (DTR) is inserted after a specific promoter that leads it to be expressed in a particular cell type of interest. Administration of diphtheria toxin kills DTR-expressing cells, leaving other cells unaffected. By expressing DTR under the control of the FRC-specific Ccl19 promoter, Novkovic et al. were able to selectively destroy the reticular cell network and then watch it grow back over time. Regrowth took about four weeks, and the resulting network properties were no different from a network formed naturally during development. Thus, it seems that the reticular cell network structure is imprinted and reemerges even after severe damage. This finding ties in nicely with previous data from the same group [13], showing that reticular cell networks form even in the absence of lymphotoxin-beta receptor, an otherwise key player in many aspects of lymphoid tissue development. Together, these data make a compelling case that network formation is a robust fundamental trait of FRCs.Next, Novkovic et al. varied the dose of diphtheria toxin such that only a fraction of FRCs were destroyed, effectively removing a random subset of the network nodes. They measured in two ways how FRC loss affects the immune system: they tracked T cell migration using two-photon microscopy and they determined the amount of antiviral T cells produced by the mice after an infection. Remarkably, as predicted by their computer simulations, lymph nodes appeared capable of tolerating the loss of up to half of FRCs with little effect on either T cell migration or the numbers of activated antiviral T cells. Only when more than half of the FRCs were destroyed did T cell motion slow down significantly and the mice were no longer able to mount effective antiviral immune responses. Such a tolerance of damage is impressive—for comparison, consider what would happen if one were to close half of London’s subway stations!Robustness to damage is of interest for many different networks, from power grids to the internet [14]. In particular, the “scale-free” architecture that features rare, strongly connected “hub” nodes is highly robust to random damage [15]. Novkovic et al. did not address whether the reticular cell network is scale-free, but it is likely that it isn’t (Box 1). Instead, the network’s robustness probably arises from its high degree of clustering, which means that the neighbors of each node are likely to be themselves also neighbors. If a node is removed from a clustered network, then there is still likely a short detour available by going through two of the neighbors. Therefore, one would have to randomly remove a large fraction of the nodes before the network structure breaks down. High clustering in the network could be a consequence of the fact that multiple fibers extend from each FRC and establish connections to many FRCs in its vicinity. A question not yet addressed by Novkovic et al. is how robust reticular cell networks would be to nonrandom damage, such as a locally spreading viral infection. In fact, scale-free networks are drastically more vulnerable to targeted rather than random damage: the United States flight network can come to a grinding halt by closing a few hub airports [15]. Less is known about the robustness to nonrandom damage for other network architectures, and the findings by Novkovic et al. motivate future research in this direction.Novkovic et al. did not yet explicitly identify all mechanisms that hamper T cell responses when more than half of the FRCs are depleted. But given the reticular cell network’s many different functions, this could occur in several ways. For instance, severe depletion might prevent the secretion of important molecules, halt the migration of T cells, prevent the anchoring of antigen-presenting dendritic cells (DCs) on the network, or cause structural disarray in the tissue. In addition to the effects on T cell migration, Novkovic et al. also showed that the amount of DCs in fact decreased when FRCs were depleted, emphasizing that several mechanisms are likely at play. Disentangling these mechanisms will require substantial additional research efforts.The current reticular cell network reconstruction by Novkovic et al. is based on thin tissue slices. It will be exciting to study the network architecture when it can be visualized in the whole organ. Some aspects of the network may then look different. For instance, those FRCs that are near the border of a slice will have their degree of connectivity underestimated, as not all of their neighbors in the network can be seen. Further refinements of the network analysis may also consider that reticular fibers are real physical objects situated in a three-dimensional space (unlike abstract connections such as friendships). Migrating T cells may travel quicker via a short, straight fiber than on a long, curved one, but the network graph does not make this distinction. More generally, it would be interesting to understand conceptually how reticular cell networks help foster immune cell migration. While at first it appears obvious that having a “road system” should make it easier for cells to roam lymph node tissue, three different theoretical studies have in fact all concluded that effective T cell migration should also be possible in the absence of a network [2022]. A related question is whether T cells are constrained to move only on the network or are merely using it for loose guidance. For instance, could migrating T cells be in contact with two or more network fibers at once or with none at all? This would make the relationship between cell migration and network structure more complex than the graph structure alone suggests.There is also some evidence that T cells can migrate according to what is called a Lévy walk [23]—a kind of random walk where frequent short steps are interspersed with few very long steps, a search strategy that appears to occur frequently in nature (though this is debated [24]). While there is so far no evidence that T cells perform a Lévy walk when roaming the lymph node [25], this may be in part due to limitations of two-photon imaging, and one could speculate that reticular cell networks might in fact be constructed in a way that facilitates this or another efficient kind of “search strategy.” Resolving this question will require substantial improvements in imaging technology, allowing individual T cells to be tracked across an entire lymph node.No doubt further studies will address these and other questions, and provide further insights on how reticular cell networks benefit immune responses. Such advances may help us design better treatments against infections that damage the network. It may also help us understand how we can best administer vaccines or tumor immune therapy treatments in a way that ensures optimal delivery to immune cells in the lymph node. As is nicely illustrated by the study of Novkovic et al., mathematical methods may well play key roles in this quest.  相似文献   

13.
The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244 -/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244 -/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.  相似文献   

14.
The receptor for glycation end products (RAGE) has been previously implicated in shaping the adaptive immune response. RAGE is expressed in T cells after activation and constitutively in T cells from patients with diabetes. The effects of RAGE on adaptive immune responses are not clear: Previous reports show that RAGE blockade affects Th1 responses. To clarify the role of RAGE in adaptive immune responses and the mechanisms of its effects, we examined whether RAGE plays a role in T cell activation in a Th2 response involving ovalbumin (OVA)-induced asthma in mice. WT and RAGE deficient wild-type and OT-II mice, expressing a T cell receptor specific for OVA, were immunized intranasally with OVA. Lung cellular infiltration and T cell responses were analyzed by immunostaining, FACS, and multiplex bead analyses for cytokines. RAGE deficient mice showed reduced cellular infiltration in the bronchial alveolar lavage fluid and impaired T cell activation in the mediastinal lymph nodes when compared with WT mice. In addition, RAGE deficiency resulted in reduced OT-II T cell infiltration of the lung and impaired IFNγ and IL-5 production when compared with WT mice and reduced infiltration when transferred into WT hosts. When cultured under conditions favoring the differentiation of T cells subsets, RAGE deficient T cells showed reduced production of IFNγ but increased production of IL-17. Our data show a stimulatory role for RAGE in T activation in OVA-induced asthma. This role is largely mediated by the effects of RAGE on T cell proliferation and differentiation. These findings suggest that RAGE may play a regulatory role in T cell responses following immune activation.  相似文献   

15.
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.Subject terms: Pattern recognition receptors, Immunosurveillance  相似文献   

16.

Objective

Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT) directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis.

Methods and Results

TIGIT was upregulated on CD4+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr−/− mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production.

Conclusions

Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.  相似文献   

17.
We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation in the absence of proliferation, indicating that activation-induced cell death may cause some of the reported increase in lymphocyte turnover during SIV infection.The immune system of higher vertebrates consists of innate and adaptive components. Innate immunity exhibits immediate recognition and response without prior sensitization. Cells of the innate immune system (i.e., monocytes/macrophages, natural killer [NK] cells, and polymorphonuclear leukocytes) recognize pathogen-associated molecular patterns and activate events such as phagocytosis, induction of the synthesis of antimicrobial peptides, expression of inflammatory and effector cytokines and chemokines, induction of nitric oxide synthase in macrophages, and expression of costimulatory molecules on antigen-presenting cells. The adaptive immune system uses somatically generated antigen receptors that are clonally distributed on T and B lymphocytes. Generally, adaptive immune recognition in the absence of innate immune recognition results in inactivation of lymphocytes that express receptors involved in the identification events (20). Thus, innate immune responses have critical consequences in adaptive immune responses.Little is known of the contribution of the innate immune system during infection with the human immunodeficiency virus (HIV). Based on similarities of biologic and genetic features, simian immunodeficiency virus (SIV) infection of rhesus macaques provides the best animal model of HIV infection and AIDS. Accordingly, this animal model is critical for the elucidation of mechanisms of pathogenesis and for the development of vaccines and antiviral therapies (12). As with almost all viral infections, the innate immune system is thought to be the first component of the immune system that recognizes SIV infection. However, few studies have methodically analyzed the changes induced in cell phenotype and cytokine levels by SIV infection. Recent studies have demonstrated that SIV infection results in a generalized increase in lymphocyte turnover (23) and that the primary site for viral replication is activated memory CD4+ T cells that are present in the intestinal lamina propia (46). Although cellular changes are not that dramatic at this early stage in peripheral lymphoid tissue, peripheral blood (PB) and lymph nodes (LN) still reflect the pathologic changes induced by the viral infection and are readily available for longitudinal studies.To analyze changes in the activation state of cells from the innate and adaptive immune system after SIV infection, we evaluated NK activity, cytokine levels in plasma, and changes in activation markers on lymphoid cells of rhesus macaques after infection with pathogenic SIVmac251. We found the sequential appearance in plasma of interferon-α/β (IFN-α/β) interleukin-18 (IL-18) and IL-12, whereas IL-4, IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) remained undetectable. We also found transient activation of NK cells during the peak of viral replication, and this activation was not predictive of disease progression. Finally, we observed that after SIV infection, both CD4+ and CD8+ T cells became activated in the absence of markers for proliferation, suggesting that the increased turnover of these cells reflects activation-induced cell death rather than differential compartmentalization.  相似文献   

18.
Lymphatic vessels transport interstitial fluid, soluble Ag, and immune cells from peripheral tissues to lymph nodes (LNs), yet the contribution of peripheral lymphatic drainage to adaptive immunity remains poorly understood. We examined immune responses to dermal vaccination and contact hypersensitivity (CHS) challenge in K14-VEGFR-3-Ig mice, which lack dermal lymphatic capillaries and experience markedly depressed transport of solutes and dendritic cells from the skin to draining LNs. In response to dermal immunization, K14-VEGFR-3-Ig mice produced lower Ab titers. In contrast, although delayed, T cell responses were robust after 21 d, including high levels of Ag-specific CD8(+) T cells and production of IFN-γ, IL-4, and IL-10 upon restimulation. T cell-mediated CHS responses were strong in K14-VEGFR-3-Ig mice, but importantly, their ability to induce CHS tolerance in the skin was impaired. In addition, 1-y-old mice displayed multiple signs of autoimmunity. These data suggest that lymphatic drainage plays more important roles in regulating humoral immunity and peripheral tolerance than in effector T cell immunity.  相似文献   

19.
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4+ or CD8+ effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.  相似文献   

20.
Lymph node (LN) hypertrophy, the increased cellularity of LNs, is the major indication of the initiation and expansion of the immune response against infection, vaccination, cancer, or autoimmunity. The mechanisms underlying LN hypertrophy remain poorly defined. In this article, we demonstrate that LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by lymphocytes) (TNFSF14) is a novel factor essential for LN hypertrophy after CFA immunization. Mechanistically, LIGHT is required for the influx of lymphocytes into but not egress out of LNs. In addition, LIGHT is required for dendritic cell migration from the skin to draining LNs. Compared with wild type mice, LIGHT(-)(/)(-) mice express lower levels of chemokines in skin and addressins in LN vascular endothelial cells after CFA immunization. We unexpectedly observed that LIGHT from radioresistant rather than radiosensitive cells, likely Langerhans cells, is required for LN hypertrophy. Importantly, Ag-specific T cell responses were impaired in draining LNs of LIGHT(-)(/)(-) mice, suggesting the importance of LIGHT regulation of LN hypertrophy in the generation of an adaptive immune response. Collectively, our data reveal a novel cellular and molecular mechanism for the regulation of LN hypertrophy and its potential impact on the generation of an optimal adaptive immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号