首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We discuss the controversial issue of species translocation for conservation, i.e. the intentional moving of a species to a non-native area when the species is threatened by extinction in its native area. Based on an argument inspired by utilitarianism: “a conservation method is good when the number of global extinctions it prevents exceeds the number of global extinctions it causes”, we identify and briefly discuss the answer to two critical research questions, and conclude that translocation has the potential to reduce net decline in global species diversity and therefore should be accepted more widely as a tool for conservation.  相似文献   

2.
One-third of the world''s reef-building corals are facing heightened extinction risk from climate change and other anthropogenic impacts. Previous studies have shown that such threats are not distributed randomly across the coral tree of life, and future extinctions have the potential to disproportionately reduce the phylogenetic diversity of this group on a global scale. However, the impact of such losses on a regional scale remains poorly known. In this study, we use phylogenetic metrics in conjunction with geographical distributions of living reef coral species to model how extinctions are likely to affect evolutionary diversity across different ecoregions. Based on two measures—phylogenetic diversity and phylogenetic species variability—we highlight regions with the largest losses of evolutionary diversity and hence of potential conservation interest. Notably, the projected loss of evolutionary diversity is relatively low in the most species-rich areas such as the Coral Triangle, while many regions with fewer species stand to lose much larger shares of their diversity. We also suggest that for complex ecosystems like coral reefs it is important to consider changes in phylogenetic species variability; areas with disproportionate declines in this measure should be of concern even if phylogenetic diversity is not as impacted. These findings underscore the importance of integrating evolutionary history into conservation planning for safeguarding the future diversity of coral reefs.  相似文献   

3.
Island species are thought to be extinction‐prone because of small population sizes, restricted geographical distribution and limited dispersal ability. However, the topographical and environmental heterogeneity, geographical isolation and stability of islands over long timescales could create refugia for taxa whose source area is threatened by environmental changes. We address this possibility by inferring the evolution of the New Caledonia (NC) and New Zealand (NZ) conifer diversity, which represents over 10% of the world's diversity for this group. We estimate speciation and extinction rates in relation to the presence/absence on these islands, and dispersal rates between the islands and surrounding areas. We also test the Eocene submersion of NC and the Oligocene drowning of NZ by comparing the fit of biogeographical scenarios using ancestral area estimations. We find that extinction rates were significantly lower for island species, and dispersal “out of islands” was higher. A model including a diversification shift when NC emerged better explains the diversification dynamics. Biogeographical analyses corroborate that conifers experienced high continental extinctions, but survived on islands. NC and NZ have thus contributed to the world's conifer diversity as “island refugia”, by maintaining early‐diverging lineages from continents during environmental changes on continents. These ancient islands also acted as “species pumps”, providing species into adjacent areas. Our study highlights the important but neglected role of islands in promoting the evolution and conservation of biodiversity.  相似文献   

4.
Aim The size of the climatic niche of a species is a major factor determining its distribution and evolution. In particular, it has been proposed that niche width should be associated with the rate of species diversification. Here, we test whether species niche width affects the speciation and extinction rates of three main clades of vertebrates: amphibians, mammals and birds. Location Global. Methods We obtained the time‐calibrated phylogenies, IUCN conservation status, species distribution maps and climatic data for 2340 species of amphibians, 4563 species of mammals and 9823 species of birds. We computed the niche width for each species as the mean annual temperature across the species range. We estimated speciation, extinction and transition rates associated with lineages with either narrow (specialist) or wide (generalist) niches using phylogeny‐based birth–death models. We also tested if current conservation status was correlated with the niche width of species. Results We found higher net diversification rates in specialist species than in generalist species. This result was explained by both higher speciation rates (for the three taxonomic groups) and lower extinction rates (for mammals and birds only) in specialist than in generalist species. In contrast, current specialist species tended to be more threatened than generalist species. Main conclusions Our diversification analysis shows that the width of the climatic niche is strongly associated with diversification rates and may thus be a crucial factor for understanding the emergence of diversity patterns in vertebrates. The striking difference between our diversification results and current conservation status suggests that the current extinction process may be different from extinction rates estimated from the whole history of the group.  相似文献   

5.
Human activities have elevated the extinction of natural populations as well as the invasion of new areas by non-native species. These dual processes of invasion and extinction may change the richness and similarity of communities, but the form these changes take is likely to depend on the manner in which invasions and extinctions occur and the spatial scale at which the changes are measured. Here, we explore the influence of differing patterns of extinction and invasion on the similarity and richness of a meta-community. In particular, we model simple stochastic processes analogous to realistic modes of human-mediated introduction of non-native species and range expansion by native species. We show that different modes of invasion and extinction can produce very different changes in diversity, and that the relative magnitude of these changes depends both on where in the meta-community diversity is measured and the degree of initial species aggregation. At any spatial scale of measurement, changes in the richness and similarity of communities following invasion and extinction are not necessarily strongly coupled: relatively large increases in richness may or may not also be associated with relatively large increases in similarity among communities. Thus, in real systems, the influence of human-induced invasions and extinctions on diversity will depend on both the precise mode of these processes (especially invasion), and how species populations are distributed across space.  相似文献   

6.
A major goal for ecology and evolution is to understand how abiotic and biotic factors shape patterns of biological diversity. Here, we show that variation in establishment success of nonnative frogs and toads is primarily explained by variation in introduction pathways and climatic similarity between the native range and introduction locality, with minor contributions from phylogeny, species ecology, and life history. This finding contrasts with recent evidence that particular species characteristics promote evolutionary range expansion and reduce the probability of extinction in native populations of amphibians, emphasizing how different mechanisms may shape species distributions on different temporal and spatial scales. We suggest that contemporary changes in the distribution of amphibians will be primarily determined by human-mediated extinctions and movement of species within climatic envelopes, and less by species-typical traits.  相似文献   

7.
If we are to plan conservation strategies that minimize the loss of evolutionary history through human-caused extinctions, we must understand how this loss is related to phylogenetic patterns in current extinction risks and past speciation rates. Nee & May (1997, Science 278, 692-694) showed that for a randomly evolving clade (i) a single round of random extinction removed relatively little evolutionary history, and (ii) extinction management (choosing which taxa to sacrifice) offered only marginal improvement. However, both speciation rates and extinction risks vary across lineages within real clades. We simulated evolutionary trees with phylogenetically patterned speciation rates and extinction risks (closely related lineages having similar rates and risks) and then subjected them to several biologically informed models of extinction. Increasing speciation rate variation increases the extinction-management pay-off. When extinction risks vary among lineages but are uncorrelated with speciation rates, extinction removes more history (compared with random trees), but the difference is small. When extinction risks vary and are correlated with speciation rates, history loss can dramatically increase (negative correlation) or decrease (positive correlation) with speciation rate variation. The loss of evolutionary history via human-caused extinctions may therefore be more severe, yet more manageable, than first suggested.  相似文献   

8.
The ecological and evolutionary processes leading to present-day biological diversity can be inferred by reconstructing the phylogeny of living organisms, and then modelling potential processes that could have produced this genealogy. A more direct approach is to estimate past processes from the fossil record. The Carnivora (Mammalia) has both substantial extant species richness and a rich fossil record. We compiled species-level data for over 10 000 fossil occurrences of nearly 1400 carnivoran species. Using this compilation, we estimated extinction, speciation and net diversification for carnivorans through the Neogene (22–2 Ma), while simultaneously modelling sampling probability. Our analyses show that caniforms (dogs, bears and relatives) have higher speciation and extinction rates than feliforms (cats, hyenas and relatives), but lower rates of net diversification. We also find that despite continual species turnover, net carnivoran diversification through the Neogene is surprisingly stable, suggesting a saturated adaptive zone, despite restructuring of the physical environment. This result is strikingly different from analyses of carnivoran diversification estimated from extant species alone. Two intervals show elevated diversification rates (13–12 Ma and 4–3 Ma), although the precise causal factors behind the two peaks in carnivoran diversification remain open questions.  相似文献   

9.
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the “Big Five” mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.  相似文献   

10.
Kaspari M  Ward PS  Yuan M 《Oecologia》2004,140(3):407-413
Geographical diversity gradients, even among local communities, can ultimately arise from geographical differences in speciation and extinction rates. We evaluated three models—energy-speciation, energy-abundance, and area—that predict how geographic trends in net diversification rates generate trends in diversity. We sampled 96 litter ant communities from four provinces: Australia, Madagascar, North America, and South America. The energy-speciation hypothesis best predicted ant species richness by accurately predicting the slope of the temperature diversity curve, and accounting for most of the variation in diversity. The communities showed a strong latitudinal gradient in species richness as well as inter-province differences in diversity. The former vanished in the temperature-diversity residuals, suggesting that the latitudinal gradient arises primarily from higher diversification rates in the tropics. However, inter-province differences in diversity persisted in those residuals—South American communities remained more diverse than those in North America and Australia even after the effects of temperature were removed.  相似文献   

11.
We combine information about the evolutionary history and distributional patterns of the genus Saintpaulia H. Wendl. (Gesneriaceae; ‘African violets’) to elucidate the factors and processes behind the accumulation of species in tropical montane areas of high biodiversity concentration. We find that high levels of biodiversity in the Eastern Arc Mountains are the result of pre-Quaternary speciation processes and environmental stability. Our results support the hypothesis that climatically stable mountaintops may have acted as climatic refugia for lowland lineages during the Pleistocene by preventing extinctions. In addition, we found evidence for the existence of lowland micro-refugia during the Pleistocene, which may explain the high species diversity of East African coastal forests. We discuss the conservation implications of the results in the context of future climate change.  相似文献   

12.
The role of historical factors in driving latitudinal diversity gradients is poorly understood. Here, we used an updated global phylogeny of terrestrial birds to test the role of three key historical factors—speciation, extinction, and dispersal rates—in generating latitudinal diversity gradients for eight major clades. We fit a model that allows speciation, extinction, and dispersal rates to differ, both with latitude and between the New and Old World. Our results consistently support extinction (all clades had lowest extinction where species richness was highest) as a key driver of species richness gradients across each of eight major clades. In contrast, speciation and dispersal rates showed no consistent latitudinal patterns across replicate bird clades, and thus are unlikely to represent general underlying drivers of latitudinal diversity gradients.  相似文献   

13.
Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ~600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ~34 Ma, but also elevated extinction ~10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.  相似文献   

14.
15.
The marine‐terrestrial richness gradient is among Earth's most dramatic biodiversity patterns, but its causes remain poorly understood. Here, we analyse detailed phylogenies of amniote clades, paleontological data and simulations to reveal the mechanisms underlying low marine richness, emphasising speciation, extinction and colonisation. We show that differences in diversification rates (speciation minus extinction) between habitats are often weak and inconsistent with observed richness patterns. Instead, the richness gradient is explained by limited time for speciation in marine habitats, since all extant marine clades are relatively young. Paleontological data show that older marine invasions have consistently ended in extinction. Simulations show that marine extinctions help drive the pattern of young, depauperate marine clades. This role for extinction is not discernible from molecular phylogenies alone, and not predicted by most previously hypothesised explanations for this gradient. Our results have important implications for the marine‐terrestrial biodiversity gradient, and studies of biodiversity gradients in general.  相似文献   

16.
Differences in species richness between regions are ultimately explained by patterns of speciation, extinction, and biogeographic dispersal. Yet, few studies have considered the role of all three processes in generating the high biodiversity of tropical regions. A recent study of a speciose group of predominately New World frogs (Hylidae) showed that their low diversity in temperate regions was associated with relatively recent colonization of these regions, rather than latitudinal differences in diversification rates (rates of speciation–extinction). Here, we perform parallel analyses on the most species-rich group of Old World frogs (Ranidae; ∼1300 species) to determine if similar processes drive the latitudinal diversity gradient. We estimate a time-calibrated phylogeny for 390 ranid species and use this phylogeny to analyze patterns of biogeography and diversification rates. As in hylids, we find a strong relationship between the timing of colonization of each region and its current diversity, with recent colonization of temperate regions from tropical regions. Diversification rates are similar in tropical and temperate clades, suggesting that neither accelerated tropical speciation rates nor greater temperate extinction rates explain high tropical diversity in this group. Instead, these results show the importance of historical biogeography in explaining high species richness in both the New World and Old World tropics.  相似文献   

17.
Dictated by limited resource availability for land acquisition, a central question in conservation biology is the ability of areas of different size to maintain species diversity. The selected reserves should not only be species rich at the moment, but should also maintain species diversity in the long run. We used two sets of data on vascular plant species in boreal lakes collected in 1933/34 and 1996 to test the relationships between lake area and the extinction, immigration and turnover rates of the species. Moreover, we investigated, whether the number of species in 1933/34 or water connection between lakes was related to extinction, immigration and turnover rates of species. We found that lake area or shoreline length was not correlated with immigration or turnover rate. But extinction rate was slightly negatively correlated with shoreline length. The original number of species was positively related to the number of species extinctions and to the absolute turnover rate in the lakes, which indicates that species richness does not create stability in these communities. Species number was not correlated with immigration rate. Upstream water connections in the lakes did not affect immigration, extinction or turnover rates. We conclude that length of the shoreline is a better measure of suitable area for water plants than the lake area, and that because the correlation between shoreline length and extinction rate was slight, also small lakes can be valuable for conservation.  相似文献   

18.
The role of infectious diseases in biological conservation   总被引:1,自引:0,他引:1  
Recent increases in the magnitude and rate of environmental change, including habitat loss, climate change and overexploitation, have been directly linked to the global loss of biodiversity. Wildlife extinction rates are estimated to be 100–1000 times greater than the historical norm, and up to 50% of higher taxonomic groups are critically endangered. While many types of environmental changes threaten the survival of species all over the planet, infectious disease has rarely been cited as the primary cause of global species extinctions. There is substantial evidence, however, that diseases can greatly impact local species populations by causing temporary or permanent declines in abundance. More importantly, pathogens can interact with other driving factors, such as habitat loss, climate change, overexploitation, invasive species and environmental pollution to contribute to local and global extinctions. Regrettably, our current lack of knowledge about the diversity and abundance of pathogens in natural systems has made it difficult to establish the relative importance of disease as a significant driver of species extinction, and the context when this is most likely to occur. Here, we review the role of infectious diseases in biological conservation. We summarize existing knowledge of disease-induced extinction at global and local scales and review the ecological and evolutionary forces that may facilitate disease-mediated extinction risk. We suggest that while disease alone may currently threaten few species, pathogens may be a significant threat to already-endangered species, especially when disease interacts with other drivers. We identify control strategies that may help reduce the negative effects of disease on wildlife and discuss the most critical challenges and future directions for the study of infectious diseases in the conservation sciences.  相似文献   

19.
The richness of biodiversity in the tropics compared to high‐latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High‐latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of “environmental harshness” and “hard selection” as eco‐evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.  相似文献   

20.
This paper investigates the role of heterogeneity and speciation/extinction history in explaining variation in regional scale (c. 0.1–3000 km2) plant diversity in the Cape Floristic Region of south‐western Africa, a species‐ and endemic‐rich biogeographical region. We used species‐area analysis and analysis of covariance to investigate geographical (east vs. west) and topographic (lowland vs. montane) patterns of diversity. We used community diversity as a surrogate for biological heterogeneity, and the diversity of naturally rare species in quarter degree squares as an indicator of differences in speciation/extinction histories across the study region. We then used standard statistical methods to analyse geographical and topographic patterns of these two measures. There was a clear geographical diversity pattern (richer in the west), while a topographic pattern (richer in mountains) was evident only in the west. The geographical boundary coincided with a transition from the reliable winter‐rainfall zone (west) to the less reliable non‐seasonal rainfall zone (east). Community diversity, or biological heterogeneity, showed no significant variation in relation to geography and topography. Diversity patterns of rare species mirrored the diversity pattern for all species. We hypothesize that regional diversity patterns are the product of different speciation and extinction histories, leading to different steady‐state diversities. Greater Pleistocene climatic stability in the west would have resulted in higher rates of speciation and lower rates of extinction than in the east, where for the most, Pleistocene climates would not have favoured Cape lineages. A more parsimonious hypothesis is that the more predictable seasonal rainfall of the west would have favoured non‐sprouting plants and that this, in turn, resulted in higher speciation and lower extinction rates. Both hypotheses are consistent with the higher incidence of rare species in the west, and higher levels of beta and gamma diversity there, associated with the turnover of species along environmental and geographical gradients, respectively. These rare species do not contribute to community patterns; hence, biological heterogeneity is uniform across the region. The weak topography pattern of diversity in the west arises from higher speciation rates and lower extinction rates in the topographically complex mountains, rather than from the influence of environmental heterogeneity on diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号