首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the sensing characteristics of a surface plasmon resonance (SPR) immunoassay for the detection of 2,4,6-trinitrotoluene (TNT) using an immunoreaction between 2,4,6-trinitrophenol-ovalbumin (TNP-OVA) conjugate and anti-2,4,6-trinitrophenol antibody (anti-TNP antibody). TNP-OVA conjugate was attached to a SPR-gold sensing surface by means of physical immobilization, which undergoes binding interaction with anti-TNP antibody. Both the immobilization and binding processes were studied from a change in the SPR-resonance angle. The quantification of TNT is based on the principle of indirect competitive immunoassay, in which the immunoreaction between the TNP-OVA conjugate and anti-TNP antibody was inhibited in the presence of free TNT in solution. The decrease in the resonance angle shift is proportional to an increase in concentration of TNT used for incubation. The immunoassay exhibited excellent sensitivity for the detection of TNT in the concentration range from 0.09 to 1000 ng/ml with good stability and reproducibility. The immunosensor developed could detect TNT as low as 0.09 ng/ml, within a response time of approximately 22 min. The sensor surface was regenerated by a brief flow of pepsin solution, which disrupts the antigen-antibody complex without destroying the conjugate biofilm. Cross-reactivity of the SPR sensor to some structurally related nitroaromatic derivative and the detection of TNT in the presence of these nitroaromatic compounds were investigated. The cross-reactivity of the SPR sensor to 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 2-amino-4,6-dinitrotoluene (2A-4,6-DNT) and 4-amino-2,6-dinitrotoluene (4A-2,6-DNT) were very low (< or =1.1%). The analytical characteristics of the proposed immunosensor are highly promising for the development of new field-portable sensors for on-site detection of landmines.  相似文献   

2.
Reported in this study are the experimental design and results of an immunosensor for the detection of the explosive, 2,4,6-trinitrotoluene (TNT) in seawater using a reversed-displacement format. This reversed-displacement immunosensor methodology has successfully measured TNT in seawater by direct injection, eliminating the need for preconcentration or pretreatment of samples. A microcolumn containing an Affi-Gel resin derivatized with a 2,4,6-trinitrobenzene (TNB) moiety and a fluorophore-labeled anti-TNT antibody composed the immunoassay reactive chamber. Fluorophore-labeled anti-TNT antibody was incubated with the modified Affi-Gel resin until binding equilibrium was reached. Under a constant flow, samples containing TNT were introduced into the flow stream displacing the fluorophore-labeled TNT antibody. Limits of detection were 2.5ng/mL or part-per-billion (ppb) for TNT in saline buffer and 25ppb in seawater with an analysis time of 10 min. Two anti-TNT antibodies with differing binding affinities were compared in the reversed-displacement assay format, and a correlation between affinity and detection limits was observed. Furthermore, we have demonstrated that the reversed-displacement format can be used to screen seawater samples containing TNT, remains effective after dozens of cycles, and provides significant fluorescence response before regeneration is required.  相似文献   

3.
The biological removal of 2,4,6-trinitrotoluene (TNT) was studied in a bench-scale bioreactor using a bacterial culture of strain OK-5 originally isolated from soil samples contaminated with TNT. The TNT was completely removed within 4 days of incubation in a 2.5 L benchscale bioreactor containing a newly developed medium. The TNT was catabolized in the presence of different supplemented carbons. Only minimal growth was observed in the killed controls and cultures that only received TNT during the incubation period. This catabolism was affected by the concentration ratio of the substrate to the biomass. The addition of various nitrogen sources produced a delayed effect for the TNT degradation. Tween 80 enhanced the degradation of TNT under these conditions. Two metabolic intermediates were detected and identified as 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene based on HPLC and GC-MS analyses, respectively. Strain OK-5 was characterized using the BIOLOG system and fatty acid profile produced by a microbial identification system equipped with a Hewlett packard HP 5890 II gas chromatograph. As such, the bacterium was identified as aStenotrophomonas species and designated asStenotrophomonas sp. OK-5.  相似文献   

4.
2,4,6-Trinitrotoluene (TNT) is an important occupational and environmental pollutant. TNT can be taken up through the skin and by inhalation. It is therefore essential to have fast and reliable methods to monitor human exposure. In rat experiments, it has been shown that TNT binds covalently to blood proteins and to tissue proteins. Hemoglobin (Hb) adducts of TNT are markers for the internal dose and possibly for the toxic effects of TNT, e.g. cataracts. In the present paper we introduce a new efficient method to quantify Hb adducts of TNT. Precipitated Hb was hydrolyzed with base in the presence of the surrogate internal standard 3,5-dinitroaniline (35DNA). The released 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT) were quantified against 35DNA by gas chromatography-mass spectrometry with negative-ion chemical ionization. Hb of 50 workers and controls from a Chinese munition factory were investigated. The Hb adduct levels ranged from 3.7 to 522 ng for 4ADNT and from 0 to 14.7 ng for 2ADNT per gram of Hb. However, in control samples from Germany no Hb adducts of 4ADNT or 2ADNT could be found.  相似文献   

5.
Degradation of TNT by bovine rumen fluid, a novel source of anaerobic microbes, was investigated. Whole rumen fluid contents were spiked with TNT and incubated for a 24h time period. Supernatant samples taken at 0, 1, 2, 4, and 24h were analyzed by reverse-phase HPLC with diode array detection. Within 1h, TNT was not detectable and reduction products of TNT including 2-hydroxyl-amino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were present with smaller amounts of diamino-nitrotoluenes. Within 2h, only the diamino and dihydroxyamino-nitrotoluene products remained. After 4h, 2,4-diamino-6-nitrotoluene and 2,4-dihydroxyamino-6-nitrotoluene were the only known molecular species left. At 24h known UV absorbing metabolites were no longer detected, suggesting further transformation such as complete reduction to triaminotoluene or destruction of the aromatic ring of TNT may have occurred. TNT was not transformed at 24h in autoclaved and buffered controls. This study presents the first direct evidence of biodegradation of TNT by ruminal microbes.  相似文献   

6.
The fungus Fusarium oxysporum was isolated and identified from the aquatic plant M. aquaticum. The capability of this fungus to transform 2,4,6-trinitrotoluene (TNT) in liquid cultures was investigated TNT was added to shake flask cultures and transformed into 2-amino-4,6-dinitrotoluene (2-A-DNT), 4-amino-2,6-dinitrotoluene (4-A-DNT), and 2,4-diamino-6-nitrotoluene (2,4-DAT) via 2- and 4-hydroxylamino-dinitrotoluene derivatives, which could be detected as intermediate metabolites. Transformation of TNT, 2-A-DNT, and 4-A-DNT was observed by whole cultures and with isolated mycelium. Cell-free protein extracts from the extracellular, soluble, and membrane-bound fractions were prepared from this fungus and tested for TNT-reducing activity. The concentrated extracellular culture medium was unable to transform TNT; however, low levels of TNT transformation were observed by the membrane fraction in the presence of nicotinamide adenine dinucleotide phosphate in an argon atmosphere. A concentrated extract of soluble enzymes also transformed TNT, but to a lesser extent. When TNT toxicity was studied with this fungus, a 50% decrease in the growth of F. oxysporum mycelium was observed when exposed to 20 mg/L TNT.  相似文献   

7.
A novel multi-channel 2 x 5 model of piezoelectric quartz micro-array immunosensor has been developed for quantitative detection of human chorionic gonadotropin (hCG) in serum or urine samples. Every crystal unit of the fabricated piezoelectric hCG micro-array immunosensor can oscillate independently without interfering each other. A 2 x 5 model of micro-array immunosensor as compared with a one-channel immunosensor can provide eight times higher detection speeds for hCG assay. The anti-hCG antibody is deposited on the gold electrode's surface of 10 MHz quartz AT-cut crystal by self-assembled technique using sulfosuccinimidyl 6-[3'-(2-pyridyldithio) propionamido] hexanoate (Sulfo-LC-SPDP), and serves as an antibody recognizing layer. The highly ordered self-assembled monolayers (SAM) ensure well-controlled surface structure and offer many advantages to the performance of the sensor. Compared with conventional antibody immobilization methods, the amount and the reaction activity of antibody monolayer coated by the SAM binding are bigger than those by the SPA method, and less non-specific binding caused by other analytes in sample is found. Under the optimized experimental conditions, the results showed that micro-array immunosensor quantitatively detected serum or urine hCG in the range of 2.5-500 mIU/ml with high precision (CV<5%); other hormones in human serum and urine did not interfere with the determination markedly. Serum and urine samples of 60 patients were detected by the micro-array immunosensor, and the results agreed well with those given by the commercial radioimmunoassay test kit, with correlation coefficient of 0.92. After regeneration with urea solution the coated immunosensor can be reused five times without appreciable loss of activity.  相似文献   

8.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, K(N), of 394 microM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

9.
The fungal ligninolytic enzyme manganese peroxidase (MnP) is known to function by oxidizing Mn(II) to Mn(III), a powerful oxidant. In this work, an abiotic system consisting of Mn(III) in oxalate buffer under aerobic conditions (Mn(III)/oxalate/O2 system) was shown to be capable of extensively transforming 2-amino-4,6-dinitrotoluene (2A46DNT)--one of the main reduction products of 2,4,6-trinitrotoluene (TNT). No significant transformation occurred in the presence of other organic acids or under anaerobic conditions. The Mn(III)/oxalate/O2 system was also able to transform other nitroaromatic compounds such as 2-nitrotoluene, 4-nitrotoluene, 2,4-dinitrotoluene, TNT - the latter to a lesser extent -, and their reduction derivatives. The Mn(III)/oxalate/O2 system mineralized 14C-U-ring labeled 2A46DNT slightly, while no significant mineralization of 14C-U-ring labeled TNT was observed. Unidentified 14C-transformation products were highly polar. Electron spin resonance experiments performed on the Mn(III)/oxalate/O2 system revealed the generation of formyl free radicals (*COO-). The oxygen requirement for the transformation of nitroaromatic compounds suggests the involvement of superoxide free radicals (O2-*). produced through autoxidation of *COO- by molecular oxygen. The implication of such a Mn(III)/oxalate/O2 system in the MnP-catalyzed degradation of nitroaromatic pollutants by white-rot fungi is further discussed.  相似文献   

10.
The ability of the white rot fungus Phanerochaete chrysosporium to mineralize 2,4,6-trinitrotoluene (TNT) was studied in the concentration range of 0.36 to 20.36 mg/liter. The initial rate of 14CO2 formation was 30% in 4 days at 0.36 mg of [14C]TNT per liter and decreased to 5% in 4 days at 20.36 mg of [14C]TNT per liter. Such a pronounced inhibition was not observed when a mixture of [14C]2-amino-4,6-dinitrotoluene and [14C]4-amino-2,6-dinitrotoluene was used as a substrate. 2-Hydroxylamino-4,6-dinitrotoluene and its isomer 4-hydroxylamino-2,6-dinitrotoluene were identified as the first detectable degradation products of TNT. Their transient accumulation correlated with the inhibition of TNT degradation and of the veratryl alcohol oxidase activity of lignin peroxidase. With purified lignin peroxidase H8, it could be shown that the two isomers of hydroxylamino-dinitrotoluene were oxidized by lignin peroxidase. The corresponding nitroso-dinitrotoluenes apparently were formed, as indicated by the formation of azoxy-tetranitrotoluenes.  相似文献   

11.
The mutagenicity and toxicity of energetic compounds such as 2,4, 6-trinitrotoluene (TNT), 1,3,5-trinitrobenzene (TNB), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3, 5,7-tetrazocine (HMX), and of amino/nitro derivatives of toluene were investigated in vitro. Mutagenicity was evaluated with the Salmonella fluctuation test (FT) and the V79 Chinese hamster lung cell mutagenicity assay. Cytotoxicity was evaluated using V79 and TK6 human lymphoblastic cells. For the TK6 and V79 assays, TNB and 2, 4,6-triaminotoluene were more toxic than TNT, whereas RDX and HMX were without effect at their maximal aqueous solubility limits. The primary TNT metabolites (2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,4-diamino-6-nitrotoluene and 2, 6-diamino-4-nitrotoluene) were generally less cytotoxic than the parent compound. The FT results indicated that TNB, TNT and all the tested primary TNT metabolites were mutagenic. Except for the cases of 4-amino-2,6-dinitrotoluene and 2,4-diamino-6-nitrotoluene in the TA98 strain, addition of rat liver S9 resulted in either no effect, or decreased activity. None of the tested compounds were mutagenic for the V79 mammalian cells with or without S9 metabolic activation. Thus, the FT assay was more sensitive to the genotoxic effects of energetic compounds than was the V79 test, suggesting that the FT might be a better screening tool for the presence of these explosives. The lack of mutagenicity of pure substances for V79 cells under the conditions used in this study does not preclude that genotoxicity could actually exist in other mammalian cells. In view of earlier reports and this study, mutagenicity testing of environmental samples should be considered as part of the hazard assessment of sites contaminated by TNT and related products.  相似文献   

12.
Bacteria readily transform 2,4,6-trinitrotoluene (TNT), a contaminant frequently found at military bases and munitions production facilities, by reduction of the nitro group substituents. In this work, the kinetics of nitroreduction were investigated by using a model nitroreductase, NAD(P)H:flavin mononucleotide (FMN) oxidoreductase. Under mediation by NAD(P)H:FMN oxidoreductase, TNT rapidly reacted with NADH to form 2-hydroxylamino-4,6-dinitrotoluene and 4-hydroxylamino-2,6-dinitrotoluene, whereas 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene were not produced. Progressive loss of activity was observed during TNT reduction, indicating inactivation of the enzyme during transformation. It is likely that a nitrosodinitrotoluene intermediate reacted with the NAD(P)H:FMN oxidoreductase, leading to enzyme inactivation. A half-maximum constant with respect to NADH, KN, of 394 μM was measured, indicating possible NADH limitation under typical cellular conditions. A mathematical model that describes the inactivation process and NADH limitation provided a good fit to TNT reduction profiles. This work represents the first step in developing a comprehensive enzyme level understanding of nitroarene biotransformation.  相似文献   

13.
The formation of TNT-derived conjugates was investigated in hairy root tissue cultures of Catharanthus roseus and in aquatic plant systems of Myriophyllum aquaticum. The temporal profiles of four TNT-derived conjugates, TNT-1, 2A-1, TNT-2 and 4A-1, were determined over 3 to 16-day exposure durations. When axenic C. roseus roots were exposed separately to 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene and 4-amino-2,6-dinitrotoluene, the array and levels of conjugates varied. Exposure of axenic roots to either 4-amino-2,6-dinitrotoluene or 2-amino-4,6-dinitrotoluene resulted in the formation of only 4A-1 and 2A-1, respectively, and not TNT-1 and TNT-2. However, amendment of previously unexposed roots with TNT produced all four conjugates. The conjugates were preferentially accumulated within the biomass phase of root cultures. Significantly, conjugates TNT-1 and TNT-2 were observed in the biomass phase of intact M. aquaticum plants exposed to TNT. The results clearly indicate the presence of common TNT transformation products in two diverse plants species and tissue type. The distribution of conjugates formed via monoamine derivatives of TNT, however, may be a function of several factors, including the starting xenobiotic type and/or level. Initial bulk rate constants for disappearance of 2,4,6 trinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene were also determined. Their magnitude followed the order: TNT >> 4-A-2,6-DNT > 2-A-4,6-DNT.  相似文献   

14.
Degradation of 2,4,6-trinitrotoluene by Serratia marcescens   总被引:1,自引:0,他引:1  
A strain of Serratia marcescens, isolated from the soil of a contaminated site, degraded 2,4,6-trinitrotoluene (TNT) as the sole source of carbon and energy. At an initial concentration of 50mg , TNT was totally degraded in 48h under aerobic conditions in a minimal salt medium. Reduction intermediates (4-amino-2,6-dinitrotoluene and 2-amino-4,6-dinitrotoluene) were observed. The presence of a surfactant (Tween 80) is essential to facilitate rapid degradation.  相似文献   

15.
An electrochemical immunosensor is reported by using aptamer-based enzymatic amplification with immunoglobulin E (IgE) as the model analyte. In this method, the IgE antibody is covalently immobilized as the capture probe on the gold electrode via a self-assembled monolayer of cysteamine. After the target is captured, the biotinylated anti-IgE aptamer is used as the detection probe. The specific interaction of streptavidin-conjugated alkaline phosphatase to the surface-bound biotinylated detection probe mediates a catalytic reaction of ascorbic acid 2-phosphate substrate to produce a reducing agent ascorbic acid. Then silver ions in the solution can be reduced, leading to the deposition of metallic silver on the electrode surface. The amount of deposited silver, which is determined by the amount of IgE target bound on the electrode surface, can be quantified using the stripping voltammetry. The results obtained demonstrated that the electrochemical immunosensor possesses high specificity and a wide dynamic range with a low detection limit that possibly arises from the combination of the highly specific aptamer and the highly sensitive stripping determination of enzymatically deposited silver.  相似文献   

16.
在建立TNT大鼠白内障的基础上,用HPLC分析了晶状体内TNT及其代谢产物,并用ESR及NBT方法检测了TNT在晶状体内的代谢过程所产生的自由基。结果表明,慢性染毒24个月的大鼠白内障晶状体内含有TNT原形和4氨基2,6二硝基甲苯代谢产物,以及在体外与正常晶状体微粒体孵育可产生TNT硝基阴离子自由基和超氧阴离子自由基。上述结果提示,TNT可进入晶状体内,在其还原代谢过程中产生硝基阴离子自由基中间产物,在有氧条件下进而产生超氧阴离子自由基,这可能是TNT导致白内障的启动因素。  相似文献   

17.
2-Amino-4,6-dinitrotoluene (2-Am-DNT) and its isomers are the most common metabolites of 2,4,6-trinitrotoluene (TNT). It is desirable to know the toxicity of this metabolite particularly because of its role in carcinogenicity and because it could contaminate drinking water. We used MCF-7 human breast cancer cells which have p53 tumor suppressor gene in wild type form in both the loci. Immunoblotting with p53 antibody showed enhanced p53 level in treated cells compared to untreated control cells. Similarly, p53 DNA-protein binding assays (gel-shift) showed accumulation of p53 protein in treated cells. This is the first report which shows p53 accumulation in 2-Am-DNT treated cells providing evidence of potential carcinogenic effects of 2-Am-DNT.  相似文献   

18.
A bacterium, Pseudomonas sp. strain C1S1, able to grow on 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluene, and 2-nitrotoluene as N sources, was isolated. The bacterium grew at 30 degrees C with fructose as a C source and accumulated nitrite. Through batch culture enrichment, we isolated a derivative strain, called Pseudomonas sp. clone A, which grew faster on TNT and did not accumulate nitrite in the culture medium. Use of TNT by these two strains as an N source involved the successive removal of nitro groups to yield 2,4- and 2,6-dinitrotoluene, 2-nitrotoluene, and toluene. Transfer of the Pseudomonas putida TOL plasmid pWW0-Km to Pseudomonas sp. clone A allowed the transconjugant bacteria to grow on TNT as the sole C and N source. All bacteria in this study, in addition to removing nitro groups from TNT, reduced nitro groups on the aromatic ring via hydroxylamine to amino derivatives. Azoxy dimers probably resulting from the condensation of partially reduced TNT derivatives were also found.  相似文献   

19.
Phlebia radiatatransformed 2,4,6-trinitrotoluene (TNT), as well as its first reduction products, the aminodinitrotoluenes, into 4-hydroxylamino-2,6-dinitrotoluene (4-OHA-2,6-DNT) and 4-amino-2,6-dinitrotoluene (4-A-2,6-DNT). No extracellular peroxidases were involved in this step. The ligninolytic extracellular fluid, assumed to contain peroxidases, did not reduce TNT. However, ligninolytic peroxidases are implicated in the transformation of the first reduction products of TNT.  相似文献   

20.
Microorganisms indigenous to surface soils and aquifer materials collected at a munitions-contaminated site transformed 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,6-dinitrotoluene (2,6-DNT) to amino-nitro intermediates within 20 to 70 days. Carbon mineralization studies with both unlabeled (TNT, 2,4-DNT, and 2,6-DNT) and radiolabeled ([14C]TNT) substrates indicated that a significant fraction of these source compounds was degraded to CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号