首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Toll-like receptor (TLR) family are essential players in activating the host innate immune response against infectious microorganisms. All TLRs signal through Toll/interleukin 1 receptor domain-containing adapter proteins. MyD88 adapter-like (Mal) is one such adapter that specifically is involved in TLR2 and TLR4 signaling. When overexpressed we have found that Mal undergoes tyrosine phosphorylation. Three possible phospho-accepting tyrosines were identified at positions 86, 106, and 187, and two mutant forms of Mal in which tyrosines 86 and 187 were mutated to phenylalanine acted as dominant negative inhibitors of NF-kappaB activation by lipopolysaccharide (LPS). Activation of THP-1 monocytic cells with the TLR4 agonist LPS and the TLR2 agonist macrophage-activating lipopeptide-2 induced phosphorylation of Mal on tyrosine residues. We found that the Bruton's tyrosine kinase (Btk) inhibitor LFM-A13 could block the endogenous phosphorylation of Mal on tyrosine in cells treated with macrophage-activating lipopeptide-2 or LPS. Furthermore, Btk immunoprecipitated from THP-1 cells activated by LPS could phosphorylate Mal. Our study therefore provides the first demonstration of the key role of Mal phosphorylation on tyrosine during signaling by TLR2 and TLR4 and identifies a novel function for Btk as the kinase involved.  相似文献   

2.
3.
乙型肝炎病毒表面抗原抑制TLR2和TLR4的激活   总被引:3,自引:0,他引:3  
目的 研究乙型肝炎病毒表面抗原(HBsAg) 在乙型肝炎病毒逃逸机体天然免疫中的作用。方法  PMA诱导THP-1分化成巨噬样细胞,并与乙肝表面抗原(HBsAg)共培养作比较,在LPS (TLR4配体)和pam3csk4(TLR1,2配体)的刺激下,检测细胞上清液中细胞因子IL-10,IL-12的表达及胞内IL-10,IL-12 mRNA 的含量,并利用免疫荧光观察NF-κB p65入核和Western blotting检测IκB-α蛋白降解与ERK蛋白磷酸化水平来判定TLR信号通路活化程度。结果 HBsAg的胞外处理能以剂量依赖的方式干扰pam3csk4和LPS诱导的IL-10和IL-12的产生,同时HBsAg的存在明显干扰pam3csk4和LPS诱导的NF-κB p65入核和IκB-α降解及ERK蛋白磷酸化水平。结论 HBsAg抑制TLR2和TLR4的激活。  相似文献   

4.
Erythropoietin stimulates the immature erythroid J2E cell line to terminally differentiate and maintains the viability of the cells in the absence of serum. In contrast, a mutant J2E clone (J2E-NR) fails to mature in response to erythropoietin; however, it remains viable in the presence of the hormone. We have shown previously that intracellular signalling is disrupted in the J2E-NR cell line and that tyrosine phosphorylation is dramatically reduced after erythropoietin stimulation. In this study we investigated the defect in J2E-NR cells that is responsible for their inability to differentiate. Screening of numerous signalling molecules revealed that the lyn tyrosine kinase appeared to be absent from J2E-NR cells. On closer examination, both lyn mRNA and protein content were reduced >500-fold. Consistent with a defect in lyn, amphotropic retroviral infection of J2E-NR cells with lyn restored the ability of the cells to synthesize haemoglobin and enabled the cells to mature morphologically. Conversely, the ability of J2E cells to differentiate in response to epo was severely curtailed when antisense lyn oligonucleotides or a dominant negative lyn were introduced into the cells. However, erythropoietin-supported viability was unaffected by reducing lyn activity. The ability of two other erythropoietin-responsive cell lines (R11 and R24) to differentiate in response to the hormone was also reduced by dominant negative lyn. Finally, co-immunoprecipitation and yeast two-hybrid analyses indicated that lyn directly associated with the erythropoietin receptor complex. These data indicate for the first time an essential role for lyn in erythropoietin-initiated differentiation of J2E cells but not in the maintenance of cell viability.  相似文献   

5.
6.
Bacterial lipopolysaccharide (LPS) is a key mediator in the vascular leak syndromes associated with Gram-negative bacterial infections. LPS opens the paracellular pathway in pulmonary vascular endothelia through protein tyrosine phosphorylation. We now have identified the protein-tyrosine kinases (PTKs) and their substrates required for LPS-induced protein tyrosine phosphorylation and opening of the paracellular pathway in human lung microvascular endothelial cells (HMVEC-Ls). LPS disrupted barrier integrity in a dose- and time-dependent manner, and prior broad spectrum PTK inhibition was protective. LPS increased tyrosine phosphorylation of zonula adherens proteins, VE-cadherin, gamma-catenin, and p120(ctn). Two SRC family PTK (SFK)-selective inhibitors, PP2 and SU6656, blocked LPS-induced increments in tyrosine phosphorylation of VE-cadherin and p120(ctn) and paracellular permeability. In HMVEC-Ls, c-SRC, YES, FYN, and LYN were expressed at both mRNA and protein levels. Selective small interfering RNA-induced knockdown of c-SRC, FYN, or YES diminished LPS-induced SRC Tyr(416) phosphorylation, tyrosine phosphorylation of VE-cadherin and p120(ctn), and barrier disruption, whereas knockdown of LYN did not. For VE-cadherin phosphorylation, knockdown of either c-SRC or FYN provided total protection, whereas YES knockdown was only partially protective. For p120(ctn) phosphorylation, knockdown of FYN, c-SRC, or YES each provided comparable but partial protection. Toll-like receptor 4 (TLR4) was expressed both on the surface and intracellular compartment of HMVEC-Ls. Prior knockdown of TLR4 blocked both LPS-induced SFK activation and barrier disruption. These data indicate that LPS recognition by TLR4 activates the SFKs, c-SRC, FYN, and YES, which, in turn, contribute to tyrosine phosphorylation of zonula adherens proteins to open the endothelial paracellular pathway.  相似文献   

7.
8.
Erythroid cells terminally differentiate in response to erythropoietin binding its cognate receptor. Previously we have shown that the tyrosine kinase Lyn associates with the erythropoietin receptor and is essential for hemoglobin synthesis in three erythroleukemic cell lines. To understand Lyn signaling events in erythroid cells, the yeast two-hybrid system was used to analyze interactions with other proteins. Here we show that the hemopoietic-specific protein HS1 interacted directly with the SH3 domain of Lyn, via its proline-rich region. A truncated HS1, bearing the Lyn-binding domain, was introduced into J2E erythroleukemic cells to determine the impact upon responsiveness to erythropoietin. Truncated HS1 had a striking effect on the phenotype of the J2E line-the cells were smaller, more basophilic than the parental proerythoblastoid cells and had fewer surface erythropoietin receptors. Moreover, basal and erythropoietin-induced proliferation and differentiation were markedly suppressed. The inability of cells containing the truncated HS1 to differentiate may be a consequence of markedly reduced levels of Lyn and GATA-1. In addition, erythropoietin stimulation of these cells resulted in rapid, endosome-mediated degradation of endogenous HS1. The truncated HS1 also suppressed the development of erythroid colonies from fetal liver cells. These data show that disrupting HS1 has profoundly influenced the ability of erythroid cells to terminally differentiate.  相似文献   

9.
The serine/threonine kinase Raf-1 is crucial for transducing intracellular signals emanating from numerous growth factors. Here we used the J2E erythroid cell line transformed by the nu-raf/nu-myc oncogenes to examine the effects of erythropoietin on endogenous Raf-1 activity. Despite the presence of constitutively active v-raf in these cells, Raf-1 exokinase activity increased after erythropoietin stimulation. This increase in enzymatic activity coincided with tyrosine phosphorylation of Raf-1 on residue Y341. Significantly, the tyrosine kinase Lyn coimmunoprecipitated with Raf-1, and Raf-1 was not tyrosine-phosphorylated in a J2E subclone lacking Lyn. Therefore, it was concluded that Lyn may be the kinase responsible for tyrosine phosphorylating Raf-1 and increasing its exokinase activity in response to erythropoietin.  相似文献   

10.
The mechanisms by which lipopolysaccharide (LPS) is recognized, and how such recognition leads to innate immune responses, are poorly understood. Stimulation with LPS induces the activation of a variety of proteins, including mitogen-activated protein kinases (MAPKs) and NF-B. Activation of protein tyrosine kinases (PTKs) is also necessary for a number of biological responses to LPS. We used a murine macrophage-like cell line, RAW264.7, to demonstrate that Janus kinase (JAK)2 is tyrosine phosphorylated immediately after LPS stimulation. Anti-Toll-like receptor (TLR)4 neutralization antibody inhibits the phosphorylation of JAK2 and the c-Jun NH2-terminal protein kinase (JNK). Both the JAK inhibitor AG490 and the kinase-deficient JAK2 protein reduce the phosphorylation of JNK and phosphatidylinositol 3-kinase (PI3K) via LPS stimulation. Pharmacological inhibition of the kinase activity of PI3K with LY-294002 decreases the phosphorylation of JNK. Finally, we show that JAK2 is involved in the production of IL-1 and IL-6. PI3K and JNK are also important for the production of IL-1. These results suggest that LPS induces tyrosine phosphorylation of JAK2 via TLR4 and that JAK2 regulates phosphorylation of JNK mainly through activation of PI3K. Phosphorylation of JAK2 via LPS stimulation is important for the production of IL-1 via the PI3K/JNK cascade. Thus JAK2 plays a pivotal role in LPS-induced signaling in macrophages. cytokine; toll-like receptor-4; c-Jun NH2-terminal kinase  相似文献   

11.
B Tang  H Mano  T Yi    J N Ihle 《Molecular and cellular biology》1994,14(12):8432-8437
Stem cell factor (SCF) plays a crucial role in hematopoiesis through its interaction with the receptor tyrosine kinase c-kit. However, the signaling events that are activated by this interaction and involved in the control of growth or differentiation are not completely understood. We demonstrate here that Tec, a cytoplasmic, src-related kinase, physically associates with c-kit through a region that contains a proline-rich motif, amino terminal of the SH3 domain. Following SCF binding, Tec is tyrosine phosphorylated and its in vitro kinase activity is increased. Tyrosine phosphorylation of Tec is not detected in the response to other cytokines controlling hematopoiesis, including colony-stimulating factor-1 (CSF-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-3 (IL-3). Conversely, the cytoplasmic kinase JAK2 is activated by IL-3 but not by SCF stimulation. The activation of distinct cytoplasmic kinases may account for the synergy seen in the actions of SCF and IL-3 on hematopoietic stem cells.  相似文献   

12.
13.
Bruton's tyrosine kinase (Btk), the gene mutated in the human immunodeficiency X-linked agammaglobulinemia, is activated by LPS and is required for LPS-induced TNF production. In this study, we have investigated the role of Btk both in signaling via another TLR (TLR2) and in the production of other proinflammatory cytokines such as IL-1beta, IL-6, and IL-8. Our data show that in X-linked agammaglobulinemia PBMCs, stimulation with TLR4 (LPS) or TLR2 (N-palmitoyl-S-[2, 3-bis(palmitoyloxy)-(2R)-propyl]-(R)-cysteine) ligands produces significantly less TNF and IL-1beta than in normal controls. In contrast, a lack of Btk has no impact on the production of IL-6, IL-8, or the anti-inflammatory cytokine, IL-10. Our previous data suggested that Btk lies within a p38-dependent pathway that stabilizes TNF mRNA. Accordingly, TaqMan quantitative PCR analysis of actinomycin D time courses presented in this work shows that overexpression of Btk is able to stabilize TNF, but not IL-6 mRNA. Furthermore, using the p38 inhibitor SB203580, we show that the TLR4-induced production of TNF, but not IL-6, requires the activity of p38 MAPK. These data provide evidence for a common requirement for Btk in TLR2- and TLR4-mediated induction of two important proinflammatory cytokines, TNF and IL-1beta, and reveal important differences in the TLR-mediated signals required for the production of IL-6, IL-8, and IL-10.  相似文献   

14.
15.
Mitogen-activated protein (MAP) kinases play a central role in controlling a wide range of cellular functions following their activation by a variety of extracellular stimuli. MAP kinase phosphatases (MKPs) represent a subfamily of dual specificity phosphatases, which negatively regulate MAP kinases. Although ERK2 activity is regulated by its phosphorylation state, MKP3 is regulated by physical interaction with ERK2, independent of its enzymatic activity (Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S., (1998) Science 280, 1262-1265; Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M. M. (2001), Mol. Cell 7, 387-399; Zhou, B., and Zhang, Z. Y. (1999) J. Biol. Chem. 274, 35526-35534). The interaction of ERK2 and MKP3 allows the reciprocal cross-regulation of their catalytic activity. Indeed, MKP3 acts as a negative regulator on ERK2-MAP kinase signal transduction activity, representing thus a negative feedback for this MAPK pathway. To identify novel proteins able to complex MKP3, we used the yeast two-hybrid system. Here we report that MKP3 and protein kinase CK2 form a protein complex, which can include ERK2. The phosphatase activity of MKP3 is then slightly increased in vitro, whereas in transfected cells, ERK2 dephosphorylation is reduced. In addition, we demonstrated that CK2 selectively phosphorylates MKP3, suggesting cross-regulation between CK2alpha and MKP3, as well as a modulation of ERK2-MAPK signaling by CK2alpha via MKP3.  相似文献   

16.
The bacterial product LPS is a critical stimulus for the host immune system in the response against the corresponding bacterial infection. LPS provides an activation stimulus for macrophages and a maturation signal for dendritic cells to set up innate and adaptive immune responses, respectively. The signaling cascade of myeloid differentiation factor 88-->IL-1R-associated kinase (IRAK)-->TNFR-associated factor 6 has been implicated in mediating LPS signaling. In this report, we studied the function of IRAK-4 in various LPS-induced signals. We found that IRAK-4-deficient cells were severely impaired in producing some IFN-regulated genes as well as inflammatory cytokines in response to LPS. Among the critical downstream signaling pathways induced by LPS, NF-kappaB activation but not IFN regulatory factor 3 or STAT1 activation was defective in cells lacking IRAK-4. IRAK-4 was also required for the proper maturation of dendritic cells by LPS stimulation, particularly in terms of cytokine production and the ability to stimulate Th cell differentiation. Our results demonstrate that IRAK-4 is critical for the LPS-induced activations of APCs.  相似文献   

17.
Mammalian Toll-like receptors (TLR) recognize microbial products and elicit transient immune responses that protect the infected host from disease. TLR4—which signals from both plasma and endosomal membranes—is activated by bacterial lipopolysaccharides (LPS) and induces many cytokine genes, the prolonged expression of which causes septic shock in mice. We report here that the expression of some TLR4-induced genes in myeloid cells requires the protein kinase activity of the epidermal growth factor receptor (EGFR). EGFR inhibition affects TLR4-induced responses differently depending on the target gene. The induction of interferon-β (IFN-β) and IFN-inducible genes is strongly inhibited, whereas TNF-α induction is enhanced. Inhibition is specific to the IFN-regulatory factor (IRF)-driven genes because EGFR is required for IRF activation downstream of TLR—as is IRF co-activator β-catenin—through the PI3 kinase/AKT pathway. Administration of an EGFR inhibitor to mice protects them from LPS-induced septic shock and death by selectively blocking the IFN branch of TLR4 signaling. These results demonstrate a selective regulation of TLR4 signaling by EGFR and highlight the potential use of EGFR inhibitors to treat septic shock syndrome.  相似文献   

18.
RP105 is a member of the toll-like receptor family of proteins that transmits an activation signal in B cells, playing a role in regulation of B cell growth and death; in macrophages and dendritic cells, RP105 is a specific inhibitor of TLR4 signaling. RP105 is uniquely important for regulating TLR4-dependent signaling. It also proved that RP105 is closely related to TLR2 in macrophage activation by Mycobacterium tuberculosis lipoproteins. The aim of our study is to investigate the role of RP105 in mouse macrophages activation of TLR4 and TLR2 signaling by lipopolysaccharides (LPS) and Pam3CysSerLys4 (Pam3CSK4) alone or in combination, and the interaction between TLR2 and TLR4 signaling through RP105. Our results indicate that besides exhibiting negative regulation of TNF-α and IL12-p40 secretion in macrophage activated by LPS, RP105 is also involved in macrophages activation by Pam3CSK4 through TLR2 signaling and exhibited regulation to IL-10 and RANTES production by mouse peritoneal macrophage activated by Pam3CSK4. In macrophages activation by LPS and Pam3CSK4 in combination, TLR2 signaling can overcome RP105-mediated regulation of TLR4 signaling. Thus, our data demonstrate that not only TLR4 signaling, but also RP105 appears to be an essential accessory for immune responses through TLR2 signaling. The function of TLR2 and TLR4 in response to TLR ligands could be associated with each other by RP105. These results can help us understanding the unique role of RP105 in macrophages response to TLR ligands.  相似文献   

19.
The glucocorticoid receptor (GR) forms part of a multiprotein complex consisting of chaperones and proteins active in glucocorticoid signaling and other pathways. By immunoaffinity purification of GR, followed by Edman sequencing and Western blotting, we identified the FMS-like tyrosine kinase 3 (Flt3) as a GR-interacting protein in rat liver and hepatoma cells. Flt3 interacts with both non-liganded and liganded GR. The DNA-binding domain of GR is sufficient for Flt3 interaction as shown by GST-pull down experiments. Studies of the effects of Flt3 and its ligand FL in glucocorticoid-driven reporter-gene assays in Cos7 cells, show that co-transfection with Flt3 and FL potentiates glucocorticoid effects. Treatment with FL had no effect on GR location and Dex induced translocation of GR was unaffected by FL. In summary, GR and Flt3 interact, affecting GR signaling. This novel cross-talk between GR and a hematopoietic growth factor might also imply glucocorticoid effects on Flt3-mediated signaling.  相似文献   

20.
ABSTRACT: Src family kinases such as Lyn are important signaling intermediaries, relaying and modulating different inputs to regulate various outputs, such as proliferation, differentiation, apoptosis, migration and metabolism. Intriguingly, Lyn can mediate both positive and negative signaling processes within the same or different cellular contexts. This duality is exemplified by the B-cell defect in Lyn-/- mice in which Lyn is essential for negative regulation of the B-cell receptor; conversely, B-cells expressing a dominant active mutant of Lyn (Lynup/up) have elevated activities of positive regulators of the B-cell receptor due to this hyperactive kinase. Lyn has well-established functions in most haematopoietic cells, viz. progenitors via influencing c-kit signaling, through to mature cell receptor/integrin signaling, e.g. erythrocytes, platelets, mast cells and macrophages. Consequently, there is an important role for this kinase in regulating hematopoietic abnormalities. Lyn is an important regulator of autoimmune diseases such as asthma and psoriasis, due to its profound ability to influence immune cell signaling. Lyn has also been found to be important for maintaining the leukemic phenotype of many different liquid cancers including acute myeloid leukaemia (AML), chronic myeloid leukaemia (CML) and B-cell lymphocytic leukaemia (BCLL). Lyn is also expressed in some solid tumors and here too it is establishing itself as a potential therapeutic target for prostate, glioblastoma, colon and more aggressive subtypes of breast cancer. LAY ABSTRACT: To relay information, a cell uses enzymes that put molecular markers on specific proteins so they interact with other proteins or move to specific parts of the cell to have particular functions. A protein called Lyn is one of these enzymes that regulate information transfer within cells to modulate cell growth, survival and movement. Depending on which type of cell and the source of the information input, Lyn can positively or negatively regulate the information output. This ability of Lyn to be able to both turn on and turn off the relay of information inside cells makes it difficult to fully understand its precise function in each specific circumstance. Lyn has important functions for cells involved in blood development, including different while blood cells as well as red blood cells, and in particular for the immune cells that produce antibodies (B-cells), as exemplified by the major B-cell abnormalities that mice with mutations in the Lyn gene display. Certain types of leukaemia and lymphoma appear to have too much Lyn activity that in part causes the characteristics of these diseases, suggesting it may be a good target to develop new anti-leukaemia drugs. Furthermore, some specific types, and even specific subtypes, of solid cancers, e.g. prostate, brain and breast cancer can also have abnormal regulation of Lyn. Consequently, targeting this protein in these cancers could also prove to be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号