首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polycomb group (PcG) proteins maintain a repressed state of gene expression over many cell divisions. The recent characterisation of several PcG proteins from plants revealed a remarkable structural and functional conservation of PcG proteins between different kingdoms. In both plants and animals, homeotic genes are among the target genes of PcG complexes, although the structure of these genes is not conserved. However, not all PcG proteins identified in animals are present in plants. Furthermore it becomes clear that PcG-mediated repression in plants is more transient compared with the long-lasting effects in animals. This may be related to the absence of PcG proteins thought to be involved in long-term maintenance of PcG repression, suggesting that the mechanisms underlying PcG-mediated repression differ between plants and animals.  相似文献   

2.
3.
4.
Hodgson JW  Brock HW 《Cell》2011,144(2):170-171
Polycomb group (PcG) proteins mediate long-range associations between Hox genes, which correlate with gene repression in vivo. Bantignies et al. (2011) identify a physiological role for the nuclear localization of Hox genes in PcG-mediated gene silencing, strengthening the evidence that nuclear positioning regulates gene expression.  相似文献   

5.
6.
7.
Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis.  相似文献   

8.
9.
Polycomb group (PcG)-mediated silencing by proteins that are conserved across plants and animals is a key feature of eukaryotic gene regulation. Investigation of PcG-mediated gene silencing has revealed a surprising degree of complexity in the molecular mechanisms that recruit the protein complexes, repress expression, and maintain the epigenetic silent state of target genes. This review summarizes our current understanding of the mechanism of PcG-mediated gene silencing in animals and higher plants.  相似文献   

10.
11.
12.
13.
14.
15.
Genome regulation by polycomb and trithorax proteins   总被引:21,自引:0,他引:21  
Polycomb group (PcG) and trithorax group (trxG) proteins are critical regulators of numerous developmental genes. To silence or activate gene expression, respectively, PcG and trxG proteins bind to specific regions of DNA and direct the posttranslational modification of histones. Recent work suggests that PcG proteins regulate the nuclear organization of their target genes and that PcG-mediated gene silencing involves noncoding RNAs and the RNAi machinery.  相似文献   

16.
The Polycomb Group (PcG) of epigenetic regulators maintains the repressed state of Hox genes during development of Drosophila, thereby maintaining the correct patterning of the anteroposterior axis. PcG-mediated inheritance of gene expression patterns must be stable to mitosis to ensure faithful transmission of repressed Hox states during cell division. Previously, two PcG mutants, polyhomeotic and Enhancer of zeste, were shown to exhibit mitotic segregation defects in embryos, and condensation defects in imaginal discs, respectively. We show that polyhomeotic(proximal) but not polyhomeotic(distal) is necessary for mitosis. To test if other PcG genes have roles in mitosis, we examined embryos derived from heterozygous PcG mutant females for mitotic defects. Severe defects in sister chromatid segregation and nuclear fallout, but not condensation are exhibited by Polycomb, Posterior sex combs and Additional sex combs. By contrast, mutations in Enhancer of zeste (which encodes the histone methyltransferase subunit of the Polycomb Repressive Complex 2) exhibit condensation but not segregation defects. We propose that these mitotic defects in PcG mutants delay cell cycle progression. We discuss possible mitotic roles for PcG proteins, and suggest that delays in cell cycle progression might lead to failure of maintenance.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号