首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The role of peripheral vs. central circadian rhythms and Clock in the maintenance of metabolic homeostasis and with aging was examined by using Clock(Delta19)+MEL mice. These have preserved suprachiasmatic nucleus and pineal gland rhythmicity but arrhythmic Clock gene expression in the liver and skeletal muscle. Clock(Delta19)+MEL mice showed fasting hypoglycemia in young-adult males, fasting hyperglycemia in older females, and substantially impaired glucose tolerance overall. Clock(Delta19)+MEL mice had substantially reduced plasma insulin and plasma insulin/glucose nocturnally in males and during a glucose tolerance test in females, suggesting impaired insulin secretion. Clock(Delta19)+MEL mice had reduced hepatic expression and loss of rhythmicity of gck, pfkfb3, and pepck mRNA, which is likely to impair glycolysis and gluconeogenesis. Clock(Delta19)+MEL mice also had reduced glut4 mRNA in skeletal muscle, and this may contribute to poor glucose tolerance. Whole body insulin tolerance was enhanced in Clock(Delta19)+MEL mice, however, suggesting enhanced insulin sensitivity. These responses occurred although the Clock(Delta19) mutation did not cause obesity and reduced plasma free fatty acids while increasing plasma adiponectin. These studies on clock-gene disruption in peripheral tissues and metabolic homeostasis provide compelling evidence of a relationship between circadian rhythms and the glucose/insulin and adipoinsular axes. It is, however, premature to declare that clock-gene disruption causes the full metabolic syndrome.  相似文献   

2.
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mice retain melatonin rhythmicity, suggesting that their central rhythmicity is intact. Here we show that melatonin production in these mutants was rhythmic in constant darkness and could be entrained by brief single daily light pulses. Under normal light-dark conditions, per2 and prokineticin2 (PK2) mRNA expression was rhythmic in the SCN of Clock(Delta19) + MEL mice. Expression of Bmal1 and npas2 was not altered, whereas per1 expression was arrhythmic. In contrast to the SCN, per1 and per2 expression, as well as Bmal1 expression in liver and skeletal muscle, together with plasma corticosterone, was arrhythmic in Clock(Delta19) + MEL mutant mice in normal light-dark conditions. npas2 mRNA was also arrhythmic in liver but rhythmic in muscle. The Clock(Delta19) mutation does not abolish central rhythmicity and light entrainment, suggesting that a functional Clock homolog, possibly npas2, exists in the SCN. Nevertheless, the SCN of Clock(Delta19) + MEL mutant mice cannot maintain liver and muscle rhythmicity through rhythmic outputs, including melatonin secretion, in the absence of functional Clock expression in the tissues. Therefore, liver and muscle, but not SCN, have an absolute requirement for CLOCK, with as yet unknown Clock-independent factors able to generate the latter.  相似文献   

3.
The Clock gene is a core component of the circadian clock in mammals. We show here that serum levels of triglyceride and free fatty acid were significantly lower in circadian Clock mutant ICR than in wild-type control mice, whereas total cholesterol and glucose levels did not differ. Moreover, an increase in body weight induced by a high-fat diet was attenuated in homozygous Clock mutant mice. We also found that dietary fat absorption was extremely impaired in Clock mutant mice. Circadian expressions of cholecystokinin-A (CCK-A) receptor and lipase mRNAs were damped in the pancreas of Clock mutant mice. We therefore showed that a Clock mutation attenuates obesity induced by a high-fat diet in mice with an ICR background through impaired dietary fat absorption. Our results suggest that circadian clock molecules play an important role in lipid homeostasis in mammals.  相似文献   

4.
5.
Plasma concentrations of free fatty acids are increased in metabolic syndrome, and the increased fatty acids may cause cellular damage via the induction of oxidative stress. The present study was designed to determine whether the increase in fatty acids can modify the free sulfhydryl group in position 34 of albumin (Cys34) and enhance the redox-cycling activity of the copper-albumin complex in high-fat diet-induced obese mice. The mice were fed with commercial normal diet or high-fat diet and water ad libitum for 3 months. The high-fat diet-fed mice developed obesity, hyperlipemia, and hyperglycemia. The plasma fatty acid/albumin ratio also significantly increased in high-fat diet-fed mice. The increased fatty acid/albumin ratio was associated with conformational changes in albumin and the oxidation of sulfhydryl groups. Moreover, an ascorbic acid radical, an index of redox-cycling activity of the copper-albumin complex, was detected only in the plasma from obese mice, whereas the plasma concentrations of ascorbic acid were not altered. Plasma thiobarbituric acid reactive substances were significantly increased in the high-fat diet group. These results indicate that the increased plasma fatty acids in the high-fat diet group resulted in the activated redox cycling of the copper-albumin complex and excessive lipid peroxidation.  相似文献   

6.
Melatonin and wheel-running rhythmicity and the effects of acute and chronic light pulses on these rhythms were studied in Clock(Delta19) mutant mice selectively bred to synthesize melatonin. Homozygous melatonin-proficient Clock(Delta19) mutant mice (Clock(Delta19/Delta19)-MEL) produced melatonin rhythmically, with peak production 2 h later than the wild-type controls (i.e., just before lights on). By contrast, the time of onset of wheel-running activity occurred within a 20-min period around lights off, irrespective of the genotype. Melatonin production in the mutants spontaneously decreased within 1 h of the expected time of lights on. On placement of the mice in continuous darkness, the melatonin rhythm persisted, and the peak occurred 2 h later in each cycle over the first two cycles, consistent with the endogenous period of the mutant. This contrasted with the onset of wheel-running activity, which did not shift for several days in constant darkness. A light pulse around the time of expected lights on followed by constant darkness reduced the expected 2-h delay of the melatonin peak of the mutants to approximately 1 h and advanced the time of the melatonin peak in the wild-type mice. When the Clock(Delta19/Delta19)-MEL mice were maintained in a skeleton photoperiod of daily 15-min light pulses, a higher proportion entrained to the schedule (57%) than melatonin-deficient mutants (9%). These results provide compelling evidence that mice with the Clock(Delta19) mutation express essentially normal rhythmicity, albeit with an underlying endogenous period of 26-27 h, and they can be entrained by brief exposure to light. They also raise important questions about the role of Clock in rhythmicity and the usefulness of monitoring behavioral rhythms compared with hormonal rhythms.  相似文献   

7.
Muscle tissue utilizes a large portion of metabolic energy for its growth and maintenance. Previously, we demonstrated that transgenic over-expression of myostatin propeptide in mice fed a high-fat diet enhanced muscle mass and circulating adiponectin while the wild-type mice developed obesity and insulin resistance. To understand the effects of enhanced muscle growth on adipose tissue metabolism, we analyzed adiponectin, PPAR-α, and PPAR-γ mRNA expressions in several fat tissues. Results indicated muscled transgenic mice fed a high-fat diet displayed increased epididymal adiponectin mRNA expression by 12 times over wild-type littermates. These transgenic mice fed either a high or normal fat diet also displayed significantly high levels of PPAR-α and PPAR-γ expressions above their wild-type littermates in epididymal fat while their expressions in mesenteric fats were not significantly different between transgenic mice and their littermates. This study demonstrates that enhanced muscle growth has positive effects on fat metabolisms through increasing adiponectin expression and its regulations.  相似文献   

8.
9.
10.
We tested the hypothesis that a high-fat diet (75% fat; 5% carbohydrates; 20% protein), for which 15% of the fat content was substituted with n-3 fatty acids, would not exhibit the diet-induced increase in pyruvate dehydrogenase kinase (PDK) activity, which is normally observed in human skeletal muscle. The fat content was the same in both the regular high-fat diet (HF) and in the n-3-substituted diet (N3). PDK activity increased after both high-fat diets, but the increase was attenuated after the N3 diet (0.051 +/- 0.007 and 0.218 +/- 0.047 min(-1) for pre- and post-HF, respectively; vs. 0.073 +/- 0.016 and 0.133 +/- 0.032 min(-1) for pre- and post-N3, respectively). However, the active form of pyruvate dehydrogenase (PDHa) activity decreased to a similar extent in both conditions (0.93 +/- 0.17 and 0.43 +/- 0.09 mmol/kg wet wt pre- and post-HF; vs. 0.87 +/- 0.19 and 0.39 +/- 0.05 mmol/kg wet wt pre- and post-N3, respectively). This suggested that the difference in PDK activity did not affect PDHa activation in the basal state, and it was regulated by intramitochondrial effectors, primarily muscle pyruvate concentration. Muscle glycogen content was consistent throughout the study, before and after both diet conditions, whereas muscle glucose-6-phosphate, glycerol-3-phosphate, lactate, and pyruvate were decreased after the high-fat diets. Plasma triglycerides decreased after both high-fat diets but decreased to a greater extent after the N3, whereas plasma free fatty acids increased after both diets, but to a lesser extent after the N3. In summary, PDK activity is decreased after a high-fat diet that is rich in n-3 fatty acids, although PDHa activity was unaltered. In addition, our data demonstrated that the hypolipidemic effect of n-3 fatty acids occurs earlier (3 days) than previously reported and is evident even when the diet has 75% of its total energy derived from fat.  相似文献   

11.
Insulin resistance can arise when pathological levels of free fatty acids (FFAs) and proinflammatory cytokines disrupt insulin signaling. Protein kinase C delta (PKCδ) is a FFA- and a proinflammatory cytokine-regulated protein kinase that is associated with inhibition of insulin signaling and action. To gain insight into the role of PKCδ in insulin resistance, PKCδ activation was studied in a genetic model of obesity-linked insulin resistance. PKCδ was found to be activated in the liver of obese insulin-resistant Zucker rats and in isolated cultured hepatocytes. PKCδ was further studied in PKCδ-null mice and their wild-type littermates fed a high-fat or control diet for 10 weeks. PKCδ-null mice on a high-fat diet had improved insulin sensitivity and hepatic insulin signaling compared to wild-type littermates. Additionally, the deleterious effect of a high-fat diet on glucose tolerance in wild-type mice was completely blocked in PKCδ-null mice. To directly test the role of PKCδ in cellular insulin resistance, primary hepatocytes from the high-fat diet mice were isolated and stimulated with insulin. Primary hepatocytes from PKCδ-null mice had improved insulin-stimulated Akt and FOXO phosphorylation compared to hepatocytes from wild-type littermates. Consistent with this result, tumor necrosis factor alpha-mediated inhibition of insulin signaling was blocked in PKCδ knockdown primary hepatocytes. These results indicate that PKCδ plays a role in insulin resistance and is consistent with the hypothesis that PKCδ is a negative regulator of insulin signaling and thus may be a therapeutic target for the treatment of type 2 diabetes.  相似文献   

12.
AimsRosiglitazone and fenofibrate, specific agonists of the peroxisome proliferator activated receptors-γ (PPARγ) and -α (PPARα), respectively, improve insulin sensitivity in diabetic animals and in patients with type 2 diabetes. Here we investigated how pre-diabetic Otsuka Long–Evans Tokushima Fatty (OLETF) rats fed with normal and high-fat diets respond to these PPAR agonists.Main methodsPre-diabetic OLETF rats were subjected to high-fat or standard diets with or without rosiglitazone or fenofibrate for 2 weeks. The metabolism of the rats and the levels of malonyl-CoA and activities of malonyl-CoA decarboxylase (MCD), acetyl-CoA carboxylase (ACC), and AMP-activated protein kinase (AMPK) in metabolic tissues were assessed.Key findingsRosiglitazone and fenofibrate significantly improved insulin sensitivity and reduced the levels of plasma triglycerides and free fatty acids in OLETF rats fed with a high-fat diet. Fenofibrate particularly reduced the body weight, fat, and total cholesterol in high fat diet OLETF rats. The highly elevated malonyl-CoA levels in the skeletal muscle and liver of OLETF rat were significantly reduced by rosiglitazone or fenofibrate due to, in part, the increased MCD activities and expression. On the other hand, ACC activities were unchanged in skeletal muscle and decreased in liver in high fat diet group. AMPK activities were dramatically decreased in OLETF rats and not affected by these agonists.SignificanceThese results demonstrate that treatment of pre-diabetic OLETF rats–particularly those fed a high-fat diet–with rosiglitazone and fenofibrate significantly improves insulin sensitivity and fatty acid metabolism by increasing the activity of MCD and reducing malonyl-CoA levels in the liver and skeletal muscle.  相似文献   

13.
A significant change in the Western diet, concurrent with the obesity epidemic, was a substitution of saturated fatty acids with polyunsaturated, specifically linoleic acid (LA). Despite increasing investigation on type as well as amount of fat, it is unclear which fatty acids are most obesogenic. The objective of this study was to determine the obesogenic potency of LA vs. saturated fatty acids and the involvement of hypothalamic inflammation. Forty-eight mice were divided into four groups: low-fat or three high-fat diets (HFDs, 45% kcals from fat) with LA comprising 1%, 15% and 22.5% of kilocalories, the balance being saturated fatty acids. Over 12 weeks, bodyweight, body composition, food intake, calorimetry, and glycemia assays were performed. Arcuate nucleus and blood were collected for mRNA and protein analysis. All HFD-fed mice were heavier and less glucose tolerant than control. The diet with 22.5% LA caused greater bodyweight gain, decreased activity, and insulin resistance compared to control and 1% LA. All HFDs elevated leptin and decreased ghrelin in plasma. Neuropeptides gene expression was higher in 22.5% HFD. The inflammatory gene Ikk was suppressed in 1% and 22.5% LA. No consistent pattern of inflammatory gene expression was observed, with suppression and augmentation of genes by one or all of the HFDs relative to control. These data indicate that, in male mice, LA induces obesity and insulin resistance and reduces activity more than saturated fat, supporting the hypothesis that increased LA intake may be a contributor to the obesity epidemic.  相似文献   

14.
Peroxisome-proliferator-activated receptor γ (PPARγ) plays a critical role in regulation of adipocyte differentiation and insulin sensitivity. To become functional, PPARγ must be activated by binding an appropriate ligand. Polyunsaturated fatty acids (PUFA) are potential ligands for PPARγ. The current experiment was designed to determine the potential for PUFA, particularly eicosapentaenoic acid and docosahexaenoic acid, to activate the function of porcine PPARγ in vivo. Transgenic mice, expressing porcine PPARγ in skeletal muscle were generated and fed with a high-saturated fat (beef tallow) or high-unsaturated fat (fish oil) diet for 4 months. When transgenic mice were fed a fish oil supplemented diet, the expression of adipogenic and glucose uptake genes was increased, leading to reduced plasma glucose concentration. The PPARγ transgene increased the expression of Glut4 in the muscle. This result suggests that there was increased glucose utilization and, therefore, a reduced blood glucose concentration in the transgenic mice. Also, the plasma adiponectin was elevated by fish oil treatment, suggesting a role of adiponectin in mediating the PUFA effect. These results suggest that PUFA may serve as a natural regulator of glucose uptake in vivo and these effects are mainly through PPARγ function.  相似文献   

15.
Conjugated linoleic acids (CLAs) and n-3 polyunsaturated fatty acids (PUFAs) improve insulin sensitivity in insulin-resistant rodents. However, the effects of these fatty acids on insulin secretion are not known but are of importance to completely understand their influence on glucose homeostasis. We therefore examined islet function after dietary supplementation consisting of 1% CLAs in combination with 1% n-3 enriched PUFAs for 12 wk to mice on a normal diet and to insulin-resistant mice fed a high-fat diet (58% fat). In the mice fed a normal diet, CLA/PUFA supplementation resulted in insulin resistance associated with low plasma adiponectin levels and low body fat content. Intravenous and oral glucose tolerance tests revealed a marked increase in insulin secretion, which nevertheless was insufficient to counteract the insulin resistance, resulting in glucose intolerance. In freshly isolated islets from mice fed the normal diet, both basal and glucose-stimulated insulin secretion were adaptively augmented by CLA/PUFA, and at a high glucose concentration this was accompanied by elevated glucose oxidation. In contrast, in high-fat-fed mice, CLA/PUFA did not significantly affect insulin secretion, insulin resistance, or glucose tolerance. It is concluded that dietary supplementation of CLA/PUFA in mice fed the normal diet augments insulin secretion, partly because of increased islet glucose oxidation, but that this augmentation is insufficient to counterbalance the induction of insulin resistance, resulting in glucose intolerance. Furthermore, the high-fat diet partly prevents the deleterious effects of CLA/PUFA, but this dietary supplementation was not able to counteract high-fat-diet-induced insulin resistance.  相似文献   

16.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   

17.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

18.
Animal studies demonstrate that circadian rhythm disruption during pregnancy can be deleterious to reproductive capacity and the long-term health of the progeny. Our previous studies in rats have shown that exposure of pregnant dams to an environment that significantly disrupts maternal circadian rhythms programs increased adiposity and poor glucose metabolism in offspring. In this study, we used mice with a ClockΔ19 mutation to determine whether foetal development within a genetically disrupted circadian environment affects pregnancy outcomes and alters the metabolic health of offspring. Ten female ClockΔ19+MEL mutant mice were mated with 10 wildtype males, and 10 wildtype females were mated with 10 ClockΔ19+MEL mutant males. While genetically identical, the heterozygote foetuses were exposed to either a normal (wildtype dams) or disrupted (ClockΔ19+MEL mutant dams) circadian environment during gestation. Pregnancy outcomes including time to mate, gestation length, litter size and birth weight were assessed. One male and one female offspring from each litter were assessed for postnatal growth, body composition, intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test at 3 and 12 months of age. There was no effect of maternal genotype on pregnancy outcomes, with days to plug, gestation length, litter size and perinatal mortality not significantly different between wildtype and ClockΔ19+MEL mutant dams. Similarly, there was no effect of maternal genotype on weight of the offspring at birth or at any stage of postnatal growth. While there was an effect of sex on various tissue weights at 3 and 12 months of age, there were minimal effects of maternal genotype. Relative adrenal weight was significantly reduced (?32%) in offspring from ClockΔ19+MEL mutant dams, whereas gastrocnemius muscle was significantly increased (+16%) at 3 months of age only. Intraperitoneal glucose tolerance tests at 3 months of age revealed female offspring from ClockΔ19+MEL mutant dams had significantly reduced area under the curve following glucose administration (?25%), although no differences were found at 12 months of age. There was no effect of maternal genotype on intraperitoneal insulin tolerance at 3 or 12 months of age for either sex. These results demonstrate that foetal growth within a genetically disrupted circadian environment during gestation has no effect on pregnancy success, and only marginal impacts upon the long-term metabolic health of offspring. These results do not support the hypothesis that circadian rhythm disruption during pregnancy programs poor metabolic homeostasis in offspring. However, when maintained on a 12L:12D photoperiod, the ClockΔ19+MEL mutant dams display relatively normal patterns of activity and melatonin secretion, which may have reduced the impact of the mutation upon foetal metabolic programming.  相似文献   

19.
Inflammation is a major underlying cause for obesity-associated metabolic diseases. Hence, anti-inflammatory dietary components may improve obesity-related disorders. We hypothesized that delta-tocotrienol (δT3), a member of the vitamin E family, reduces adiposity, insulin resistance and hepatic triglycerides through its anti-inflammatory properties. To test this hypothesis, C57BL/6J male mice were fed a high-fat diet (HF) with or without supplementation of δT3 (HF+δT3) at 400 mg/kg and 1600 mg/kg for 14 weeks, and they were compared to mice fed a low-fat diet (LF) or HF supplemented with metformin as an antidiabetic control. Glucose tolerance tests were administered 2 weeks prior to the end of treatments. Histology, quantitative polymerase chain reaction and protein analyses were performed to assess inflammation and fatty acid metabolism in adipose and liver tissues. Significant improvements in glucose tolerance, and reduced hepatic steatosis and serum triglycerides were observed in δT3-supplemented groups compared to the HF group. Body and fat pad weights were not significantly reduced in HF+δT3 groups; however, we observed smaller fat cell size and reduced macrophage infiltration in their adipose tissues compared to other groups. These changes were at least in part mechanistically explained by a reduction of mRNA and protein expression of proinflammatory adipokines and increased expression of anti-inflammatory adipokines in HF+δT3 mice. Moreover, δT3 dose-dependently increased markers of fatty acid oxidation and reduced markers of fatty acid synthesis in adipose tissue and liver. In conclusion, our studies suggest that δT3 may promote metabolically healthy obesity by reducing fat cell hypertrophy and decreasing inflammation in both liver and adipose tissue.  相似文献   

20.
NO-1886改善糖尿病小型猪的糖代谢   总被引:1,自引:0,他引:1  
合成化合物NO-1886是一种脂蛋白脂酶活化剂,已被证明其可降低血浆TG并能升高HDLC的浓度.后又发现其还有降低高脂高蔗糖诱发糖尿病兔血浆葡萄糖浓度的作用.对高脂高蔗糖饲料喂养的小型猪脂肪细胞大小、血浆TNF—α和FFA的水平以及NO-1886对其影响进行了研究,结果发现,脂肪细胞明显肥大.血浆TNF-α和FFA以及空腹血糖水平均增高,且引起胰岛素抵抗.添加了l%NO-1886后.脂肪细胞增大被抑制,血浆TNF—α、FFA和空腹血糖的浓度均显著降低,血浆葡萄糖清除率和胰岛素分泌急性相都有了明显改善.以上结果说明,NO-1886可能通过抑制脂肪蓄积、降低血浆TNF-α和FFA的浓度而改善高脂高蔗糖饲料引起的小型猪的糖代谢紊乱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号