首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral administration of Clostridium butyricum as probiotic is increasingly gaining importance in the treatment of diarrhea and the improvement of animal performance. However, the mechanisms of host cell receptor recognition of C. butyricum and the downstream immune signaling pathways leading to these benefits remain unclear. The objective of this study was to analyze the mechanisms involved in C. butyricum induction of the toll-like receptor (TLR) signaling. Knockdown of myeloid differentiation primary response protein 88 (MyD88) expression using small interfering RNA in this manner did not affect C. butyricum-induced elevated levels of nuclear factor κB (NF-κB), interleukin-8 (IL-8), IL-6, and tumor necrosis factor alpha (TNF-α), suggesting a MyD88-independent route to TLR signaling transduction. However, a significant reduction in the levels of NF-κB, IL-8, IL-6, and TNF-α was evident in the absence of TLR2 expression, implying the need for TLR2 in C. butyricum recognition. Hence, C. butyricum activates TLR2-mediated MyD88-independent signaling pathway in human epithelial cells, which adds to our understanding of the molecular mechanisms of this probiotic action on gut epithelium.  相似文献   

2.
Toll-like receptors (TLRs) and retinoic acid-inducible gene I-like helicases (RLHs) are two major machineries recognizing RNA virus infection of innate immune cells. Intracellular signaling for TLRs and RLHs is mediated by their cytoplasmic adaptors, i.e., MyD88 or TRIF and IPS-1, respectively. In the present study, we investigated the contributions of TLRs and RLHs to the cytotoxic T-lymphocyte (CTL) response by using lymphocytoid choriomeningitis virus (LCMV) as a model virus. The generation of virus-specific cytotoxic T lymphocytes was critically dependent on MyD88 but not on IPS-1. Type I interferons (IFNs) are known to be important for the development of the CTL response to LCMV infection. Serum levels of type I IFNs and proinflammatory cytokines were mainly dependent on the presence of MyD88, although IPS-1−/− mice showed a decrease in IFN-α levels but not in IFN-β and proinflammatory cytokine levels. Analysis of Ifna6+/GFP reporter mice revealed that plasmacytoid dendritic cells (DCs) are the major source of IFN-α in LCMV infection. MyD88−/− mice were highly susceptible to LCMV infection in vivo. These results suggest that recognition of LCMV by plasmacytoid DCs via TLRs is responsible for the production of type I IFNs in vivo. Furthermore, the activation of a MyD88-dependent innate mechanism induces a CTL response, which eventually leads to virus elimination.  相似文献   

3.
We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.  相似文献   

4.
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.  相似文献   

5.
Nucleosome is the major autoantigen in systemic lupus erythematosus. It is found as a circulating complex in the sera of patients and seems to play a key role in disease development. In this study, we show for the first time that physiologic concentrations of purified nucleosomes directly induce in vitro dendritic cell (DC) maturation of mouse bone marrow-derived DC, human monocyte-derived DC (MDDC), and purified human myeloid DC as observed by stimulation of allogenic cells in MLR, cytokine secretion, and CD86 up-regulation. Importantly, nucleosomes act as free complexes without the need for immune complex formation or for the presence of unmethylated CpG DNA motifs, and we thus identified a new mechanism of DC activation by nucleosomes. We have clearly demonstrated that this activation is nucleosome-specific and endotoxin-independent. Particularly, nucleosomes induce MDDC to secrete cytokines known to be detected in high concentrations in the sera of patients. Moreover, activated MDDC secrete IL-8, a neutrophil chemoattractant also detected in patient sera, and thus might favor the inflammation observed in patients. Both normal and lupus MDDC are sensitive to nucleosome-induced activation. Finally, injection of purified nucleosomes to normal mice induces in vivo DC maturation. Altogether, these results strengthen the key role of nucleosomes in systemic lupus erythematosus and might explain how peripheral tolerance is broken in patients.  相似文献   

6.

Background

RP105 (CD180) is TLR4 homologue lacking the intracellular TLR4 signaling domain and acts a TLR accessory molecule and physiological inhibitor of TLR4-signaling. The role of RP105 in vascular remodeling, in particular post-interventional remodeling is unknown.

Methods and Results

TLR4 and RP105 are expressed on vascular smooth muscle cells (VSMC) as well as in the media of murine femoral artery segments as detected by qPCR and immunohistochemistry. Furthermore, the response to the TLR4 ligand LPS was stronger in VSMC from RP105−/− mice resulting in a higher proliferation rate. In RP105−/− mice femoral artery cuff placement resulted in an increase in neointima formation as compared to WT mice (4982±974 µm2 vs.1947±278 µm2,p = 0.0014). Local LPS application augmented neointima formation in both groups, but in RP105−/− mice this effect was more pronounced (10316±1243 µm2 vs.4208±555 µm2,p = 0.0002), suggesting a functional role for RP105. For additional functional studies, the extracellular domain of murine RP105 was expressed with or without its adaptor protein MD1 and purified. SEC-MALSanalysis showed a functional 2∶2 homodimer formation of the RP105-MD1 complex. This protein complex was able to block the TLR4 response in whole blood ex-vivo. In vivo gene transfer of plasmid vectors encoding the extracellular part of RP105 and its adaptor protein MD1 were performed to initiate a stable endogenous soluble protein production. Expression of soluble RP105-MD1 resulted in a significant reduction in neointima formation in hypercholesterolemic mice (2500±573 vs.6581±1894 µm2,p<0.05), whereas expression of the single factors RP105 or MD1 had no effect.

Conclusion

RP105 is a potent inhibitor of post-interventional neointima formation.  相似文献   

7.
Recombinant hemagglutinin B (rHagB), a virulence factor of the periodontal pathogen Porphyromonas gingivalis, has been shown to induce protective immunity against bacterial infection. Furthermore, we have demonstrated that rHagB is a TLR4 agonist for dendritic cells. However, it is not known how rHagB dendritic cell stimulation affects the activation and differentiation of T cells. Therefore, we undertook the present study to examine the role of TLR4 signaling in shaping the CD4(+) T cell response following immunization of mice with rHagB. Immunization with this Ag resulted in the induction of specific CD4(+) T cells and Ab responses. In TLR4(-/-) and MyD88(-/-) but not Toll/IL-1R domain-containing adapter inducing IFN-β-deficient (TRIF(Lps2)) mice, there was an increase in the Th2 CD4(+) T cell subset, a decrease in the Th1 subset, and higher serum IgG(1)/IgG(2) levels of HagB-specific Abs compared with those in wild-type mice. These finding were accompanied by increased GATA-3 and Foxp3 expression and a decrease in the activation of CD4(+) T cells isolated from TLR4(-/-) and MyD88(-/-) mice. Interestingly, TLR4(-/-) CD4(+) T cells showed an increase in IL-2/STAT5 signaling. Whereas TRIF deficiency had minimal effects on the CD4(+) T cell response, it resulted in increased IFN-γ and IL-17 production by memory CD4(+) T cells. To our knowledge, these results demonstrate for the first time that TLR4 signaling, via the downstream MyD88 and TRIF molecules, exerts a differential regulation on the CD4(+) T cell response to HagB Ag. The gained insight from the present work will aid in designing better therapeutic strategies against P. gingivalis infection.  相似文献   

8.
9.
Human TLR10 is an orphan member of the TLR family. Genomic studies indicate that TLR10 is in a locus that also contains TLR1 and TLR6, two receptors known to function as coreceptors for TLR2. We have shown that TLR10 was not only able to homodimerize but also heterodimerized with TLRs 1 and 2. In addition, unlike TLR1 and TLR6, TLR10 was expressed in a highly restricted fashion as a highly N-glycosylated protein, which we detected in B cell lines, B cells from peripheral blood, and plasmacytoid dendritic cells from tonsil. We were also able to detect TLR10 in a CD1a(+) DC subset derived from CD34(+) progenitor cells which resemble Langerhans cells in the epidermis. Although we were unable to identify a specific ligand for TLR10, by using a recombinant CD4TLR10 molecule we also demonstrated that TLR10 directly associates with MyD88, the common Toll IL-1 receptor domain adapter. Additionally, we have characterized regions in the Toll IL-1 receptor domain of TLR10 that are essential in the activation of promoters from certain inflammatory cytokines. Even though TLR10 expression has not been detected in mice, we have identified a partial genomic sequence of the TLR10 gene that was present but nonfunctional and disrupted by a retroviral insertion in all mouse strains tested. However, a complete TLR10 sequence could be detected in the rat genome, indicating that a functional copy may be preserved in this species.  相似文献   

10.
TLR ligands are known to activate APCs, but direct T cell responsiveness to TLR ligands is controversial. Because of their clinical relevance, we performed in-depth studies of the effects of the TLR9-associated ligands, oligodeoxynucleotides (ODNs), on highly purified T lymphocytes. Both CpG and non-CpG ODNs directly costimulate mouse and human CD4(+) T cells, resulting in activation marker upregulation, cytokine secretion, elevated TCR phosphorylation, and proliferation. Surprisingly, ODN costimulation occurred independently of TLR9 and MyD88, as well as ICOS, CD28, and TRIF. TLR9-antagonist ODNs likewise promoted T cell activation, which has important implications for the study of these "inhibitory" ODNs in inflammatory diseases. Cytokine profiling revealed that ODNs promote polarization of distinct Th subsets, and that ODNs differentially affect human naive and memory T cells. Our studies reveal a striking and unexpected ability of ODNs to directly activate and polarize T cells, presenting an opportunity to enhance the paradigm for selection of therapeutic ODNs in humans.  相似文献   

11.
l-Ascorbic acid (vitamin C) has been reported to play a role in the treatment and prevention of cancer. However, its specific mechanistic pathways remain obscure. This study was carried out to identify the sodium ascorbate–induced apoptotic pathway in B16F10 murine melanoma cells. Sodium ascorbate was found to induce the apoptosis of B16F10 murine melanoma in a time- and dose-dependent manner, and this was prevented by pretreatment with N-acetyl-l-cysteine (NAC), a well-known antioxidant. In fact, sodium ascorbate–treated B16F10 melanoma cells showed increased intracellular reactive oxygen species generation (ROS) levels. These results indicate that sodium ascorbate induced apoptosis in B16F10 murine melanoma cells by acting as a prooxidant. We examined the involvement of caspase-8 using a specific caspase-8 inhibitor (z-IETD-fmk) on the sodium ascorbate–induced apoptotic pathway. Cell death was found not to be inhibited by z-IETD-fmk treatment, indicating that sodium ascorbate–induced apoptosis is not mediated by caspase-8. In addition, we detected a reduction in the mitochondrial membrane potential during apoptosis and confirmed cytochrome-c release from mitochondria by immunoblotting. Taken together, it appears that the induction of a prooxidant state by sodium ascorbate and a subsequent reduction in mitochondrial membrane potential are involved in the apoptotic pathway of B16F10 murine melanoma cells, and that this occurs in a caspase-8–independent manner.Abbreviations NAC N-acetyl-l-cysteine - ROS reactive oxygen species - m mitochondrial membrane potentialJae Seung Kang and Daeho Cho contributed equally to this work.  相似文献   

12.
Biglycan is a proteoglycan ubiquitously present in extracellular matrix of a variety of organs, including heart, and it was reported to be overexpressed in myocardial infarction. Myocardial infarction may be complicated by perimyocarditis through unknown mechanisms. Our aim was to investigate the capacity of TLR2/TLR4 ligand biglycan to enhance the presentation of specific Ags released upon cardiomyocyte necrosis. In vitro, OVA-pulsed bone marrow-derived dendritic cells from wild-type (WT; C57BL/6) and TLR2-, TLR4-, MyD88-, or TRIF-deficient mice were cotreated with LPS, biglycan, or vehicle and incubated with OVA-recognizing MHC I- or MHC II-restricted T cells. Biglycan enhanced OVA-specific cross-priming by >80% to MHC I-restricted T cells in both TLR2- and TLR4-pathway-dependent manners. Accordingly, biglycan-induced cross-priming by both MyD88- and TRIF-deficient dendritic cells (DCs) was strongly diminished. OVA-specific activation of MHC II-restricted T cells was predominantly TLR4 dependent. Our first in vivo correlate was a model of experimental autoimmune perimyocarditis triggered by injection of cardiac Ag-pulsed DCs (BALB/c). Biglycan-treated DCs triggered perimyocarditis to a comparable extent and intensity as LPS-treated DCs (mean scores 1.3 ± 0.3 and 1.5 ± 0.4, respectively). Substitution with TLR4-deficient DCs abolished this effect. In a second in vivo approach, WT and biglycan-deficient mice were followed 2 wk after induction of myocardial infarction. WT mice demonstrated significantly greater myocardial T lymphocyte infiltration in comparison with biglycan-deficient animals. We concluded that the TLR2/4 ligand biglycan, a component of the myocardial matrix, may enhance Ag-specific T cell priming, potentially via MyD88 and TRIF, and stimulate autoimmune perimyocarditis.  相似文献   

13.
Bacterial LPS is a natural adjuvant that induces profound effects on T cell clonal expansion, effector differentiation, and long-term T cell survival. In this study, we delineate the in vivo mechanism of LPS action by pinpointing a role for MyD88 and CD11c(+) cells. LPS induced long-term survival of superantigen-stimulated CD4 and CD8 T cells in a MyD88-dependent manner. By tracing peptide-stimulated CD4 T cells after adoptive transfer, we showed that for LPS to mediate T cell survival, the recipient mice were required to express MyD88. Even when peptide-specific CD4 T cell clonal expansion was dramatically boosted by enforced OX40 costimulation, OX40 only synergized with LPS to induce survival when the recipient mice expressed MyD88. Nevertheless, these activated, but moribund, T cells in the MyD88(-/-) mice acquired effector properties, such as the ability to synthesize IFN-gamma, demonstrating that effector differentiation is not automatically coupled to a survival program. We confirmed this notion in reverse fashion by showing that effector differentiation was not required for the induction of T cell survival. Hence, depletion of CD11c(+) cells did not affect LPS-driven specific T cell survival, but CD11c(+) cells were paramount for optimal effector T cell differentiation as measured by IFN-gamma potential. Thus, LPS adjuvanticity is based on MyD88 promoting T cell survival, while CD11c(+) cells support effector T cell differentiation.  相似文献   

14.
15.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4(+)CD45Rb(high) T cells and/or CD4(+)CD45Rb(low)CD25(+) regulatory T cells were isolated and adoptively transferred to RAG1(-/-) mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [(3)H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4(+)CD45Rb(high) T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88(-/-) CD4(+) T cells showed decreased proliferation compared with WT CD4(+) T cells both in vivo and in vitro. CD4(+)CD45Rb(high) T cells from MyD88(-/-) mice did not induce wasting disease when transferred into RAG1(-/-) recipients. Lamina propria CD4(+) T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88(-/-) cells than mice receiving WT cells. In vitro, MyD88(-/-) T cells were blunted in their ability to secrete IL-17 but not IFN-gamma. Absence of MyD88 in CD4(+)CD45Rb(high) cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.  相似文献   

16.
Scavenger receptor (SR)-specific delivery by maleylation of a ubiquitous self-protein, Ig, to SR-bearing APCs results in self-limiting induction of autoimmune effects in vivo. Immunization with maleyl-Ig breaks T cell tolerance to self-Ig and causes hypergammaglobulinemia, with increases in spleen weight and cellularity. The majority of splenic B cells show an activated phenotype upon maleyl-Ig immunization, leading to large-scale conversion to a CD138+ phenotype and to significant increases in CD138-expressing splenic plasma cells. The polyclonal B cell activation, hypergammaglobulinemia, and autoreactive Ig-specific T cell responses decline over a 2-mo period postimmunization. Following adoptive transfer, T cells from maleyl-Ig-immune mice taken at 2 wk postimmunization can induce hypergammaglobulinemia in the recipients, but those taken at 10 wk postimmunization cannot. Hypergammaglobulinemia in the adoptive transfer recipients is also transient and is followed by an inability to respond to fresh maleyl-Ig immunization, suggesting that the autoreactive Ig-specific T cells are inactivated peripherally following disruption of tolerance. Thus, although autoreactive T cell responses to a ubiquitous self-Ag, Ig, are induced by SR-mediated delivery to professional APCs in vivo resulting in autoimmune pathophysiological effects, they are effectively and rapidly turned off by inactivation of these activated Ig-specific T cells in vivo.  相似文献   

17.
Under physiological conditions, manganese(II) exhibits catalase-like activity. However, at elevated concentrations, it induces apoptosis via a non-mitochondria-mediated mechanism (Oubrahim, H., Stadtman, E. R., and Chock, P. B. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9505-9510). In this study, we show that the Mn(II)-induced apoptosis, as monitored by caspase-3-like activity, in NIH3T3 cells was inhibited by calpain inhibitors I and II or the p38 MAP kinase inhibitor, SB202190. The control experiments showed that each of these inhibitors in the concentration ranges used exerted no effect on activated caspase-3-like activity. Furthermore, caspase-12 was cleaved in Mn(II)-treated cells, suggesting that the Mn(II)-induced apoptosis is mediated by caspase-12. This notion is confirmed by the observations that pretreatment of NIH3T3 cells with either caspase-12 antisense RNA or dsRNA corresponding to the full-length caspase-12 led to a dramatic decrease in caspase-3-like activity induced by Mn(II). The precise mechanism by which Mn(II) induced the apoptosis is not clear. Nevertheless, Mn(II), in part, exerts its effect via its ability to replace Ca(II) in the activation of m-calpain, which in turn activates caspase-12 and degrades Bcl-xL. In addition, the dsRNA(i) method serves as an effective technique for knocking out caspase-12 in NIH3T3 cells without causing apoptosis.  相似文献   

18.
Mycoplasmas and their membranes are potent activators of macrophages, the active principle being lipoproteins and lipopeptides. Two stereoisomers of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 (MALP-2) differing in the configuration of the lipid moiety were synthesized and compared in their macrophage-activating potential, the R-MALP being >100 times more active than the S-MALP in stimulating the release of cytokines, chemokines, and NO. To assess the role of the Toll-like receptor (TLR) family in mycoplasmal lipopeptide signaling, the MALP-2-mediated responses were analyzed using macrophages from wild-type, TLR2-, TLR4-, and MyD88-deficient mice. TLR2- and MyD88-deficient cells showed severely impaired cytokine productions in response to R- and S-MALP. The MALP-induced activation of intracellular signaling molecules was fully dependent on both TLR2 and MyD88. There was a strong preference for the R-MALP in the recognition by its functional receptor, TLR2.  相似文献   

19.
Confluent T cell colonies were grown by culturing blood mononuclear cells in double agar layers containing autologous plasma and phytohemagglutinin (PHA) for one week (37 degrees C, 5% CO2). The plates were then overlaid with serum-free alpha medium which was harvested after 24 h. This medium was demonstrated to have colony-stimulating activity (CSA) of greater potency than conventionally prepared PHA-leukocyte conditioned medium, which was prepared by incubating cells from the same donors. Removal of OKT4-positive cells using a monoclonal antibody and complement abolished CSA production by cells from T cell colonies while the removal of OKT8-positive cells had no effect.  相似文献   

20.
Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号