首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The expression of certain HLA class I alleles, including HLA-B*27 and HLA-B*57, is associated with better control of human immunodeficiency virus type 1 (HIV-1) infection, but the mechanisms responsible are not fully understood. We sought evidence that pressure from the human restriction factor TRIM5α (hTRIM5α) could contribute to viral control. The hTRIM5α sensitivity of viruses from both HLA-B*57-positive (HLA-B*57+) and HLA-B*27+ patients who spontaneously controlled viral replication, but not viruses from viremic patients expressing these alleles, was significantly greater than that of viruses from patients not expressing these protective HLA-B alleles. Overall, a significant negative correlation between hTRIM5α sensitivity and viral load was observed. In HLA-B*57+ patients, the T242N mutation in the HLA-B*57-restricted TW10 CD8+ T lymphocyte (CTL) epitope was strongly associated with hTRIM5α sensitivity. In HLA-B*27+ controllers, hTRIM5α sensitivity was associated with a significant reduction in emergence of key CTL mutations. In several patients, viral evolution to avoid hTRIM5α sensitivity was observed but could be associated with reduced viral replicative capacity. Thus, in individuals expressing protective HLA-B alleles, the combined pressures exerted by CTL, hTRIM5α, and capsid structural constraints can prevent viral escape both by impeding the selection of necessary resistance/compensatory mutations and forcing the selection of escape mutations that increase hTRIM5α sensitivity or impair viral replicative capacity.  相似文献   

2.
We previously reported that human immunodeficiency virus type 2 (HIV-2) carrying alanine or glutamine but not proline at position 120 of the capsid protein (CA) could grow in the presence of anti-viral factor TRIM5α of cynomolgus monkey (CM). To elucidate details of the interaction between the CA and TRIM5α, we generated mutant HIV-2 viruses, each carrying one of the remaining 17 possible amino acid residues, and examined their sensitivity to CM TRIM5α-mediated restriction. Results showed that hydrophobic residues or those with ring structures were associated with sensitivity, while those with small side chains or amide groups conferred resistance. Molecular dynamics simulation study revealed a structural basis for the differential TRIM5α sensitivities. The mutations at position 120 in the loop between helices 6 and 7 (L6/7) affected conformation of the neighboring loop between helices 4 and 5 (L4/5), and sensitive viruses had a common L4/5 conformation. In addition, the common L4/5 structures of the sensitive viruses were associated with a decreased probability of hydrogen bond formation between the 97th aspartic acid in L4/5 and the 119th arginine in L6/7. When we introduced aspartic acid-to-alanine substitution at position 97 (D97A) of the resistant virus carrying glutamine at position 120 to disrupt hydrogen bond formation, the resultant virus became moderately sensitive. Interestingly, the virus carrying glutamic acid at position 120 showed resistance, while its predicted L4/5 conformation was similar to those of sensitive viruses. The D97A substitution failed to alter the resistance of this particular virus, indicating that the 120th amino acid residue itself is also involved in sensitivity regardless of the L4/5 conformation. These results suggested that a hydrogen bond between the L4/5 and L6/7 modulates the overall structure of the exposed surface of the CA, but the amino acid residue at position 120 is also directly involved in CM TRIM5α recognition.  相似文献   

3.
4.
HIV-1 is strictly adapted to humans, and cause disease-inducing persistent infection only in humans. We have generated a series of macaque-tropic HIV-1 (HIV-1mt) to establish non-human primate models for basic and clinical studies. HIV-1mt clones available to date grow poorly in macaque cells relative to SIVmac239. In this study, viral adaptive mutation in macaque cells, G114E in capsid (CA) helix 6 of HIV-1mt, that enhances viral replication was identified. Computer-assisted structural analysis predicted that another Q110D mutation in CA helix 6 would also increase viral growth potential. A new proviral construct MN4Rh-3 carrying CA-Q110D exhibited exquisitely enhanced growth property specifically in macaque cells. Susceptibility of MN4Rh-3 to macaque TRIM5α/TRIMCyp proteins was examined by their expression systems. HIV-1mt clones so far constructed already completely evaded TRIMCyp restriction, and further enhancement of TRIMCyp resistance by Q110D was not observed. In addition, Q110D did not contribute to evasion from TRIM5α restriction. However, the single-cycle infectivity of MN4Rh-3 in macaque cells was enhanced relative to the other HIV-1mt clones. Our results here indicate that CA-Q110D accelerates viral growth in macaque cells irrelevant to TRIM5 proteins restriction.  相似文献   

5.
TRIM5α is a potent anti-retroviral factor that interacts with viral capsid (CA) in a species-specific manner. Recently, we and others reported generation of two distinct HIV-1 CAs that effectively overcome rhesus TRIM5α-imposed species barrier. In this study, to directly compare the effect of different mutations in the two HIV-1 CAs on evasion from macaque TRIM5-restriction, we newly generated macaque-tropic HIV-1 (HIV-1mt) proviral clones carrying the distinct CAs in the same genomic backbone, and examined their replication abilities in macaque TRIM5-overexpressing human cells and in rhesus cells. Comparative analysis of amino acid sequences and homology modeling-based structures revealed that, while both CAs gained some mutated amino acids with similar physicochemical properties, their overall appearances of N-terminal domains were different. Experimentally, the two CAs exhibited incomplete TRIM5α-resistance relative to SIVmac239 CA and different degrees of susceptibility to various TRIM5 proteins. Finally, two HIV-1mt clones carrying a different combination of the CA mutations were found to grow to a comparable extent in established and primary rhesus cells. Our data show that there could be some distinct CA patterns to confer significant TRIM5-resistance on HIV-1.  相似文献   

6.
After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer 'top' surface of N-MLV CA, including the N-terminal β-hairpin, and map up to 29 A(o) apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1(n) and Fv1(b). Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding.  相似文献   

7.
The restriction factor TRIM5α binds to the capsid protein of the retroviral core and blocks retroviral replication. The affinity of TRIM5α for the capsid is a major host tropism determinant of HIV and other primate immunodeficiency viruses, but the molecular interface involved in this host–pathogen interaction remains poorly characterized. Here we use NMR spectroscopy to investigate binding of the rhesus TRIM5α SPRY domain to a selection of HIV capsid constructs. The data are consistent with a model in which one SPRY domain interacts with more than one capsid monomer within the assembled retroviral core. The highly mobile SPRY v1 loop appears to span the gap between neighboring capsid hexamers making interhexamer contacts critical for restriction. The interaction interface is extensive, involves mobile loops and multiple epitopes, and lacks interaction hot spots. These properties, which may enhance resistance of TRIM5α to capsid mutations, result in relatively low affinity of the individual SPRY domains for the capsid, and the TRIM5α-mediated restriction depends on the avidity effect arising from the oligomerization of TRIM5α.  相似文献   

8.
We have recently generated a monkey cell-tropic virus termed NL-DT5R from an HIV-1 NL4-3 clone and demonstrated that both cyclophilin A (CypA)-binding loop in Gag-capsid (CA) and Vif are responsible for the species-restriction of HIV-1. In this study, we constructed 16 CypA-binding loop mutants from the HIV-1-derivative NL-DT5R, and analyzed them biologically and biochemically. The mutants displayed various multi-cycle infection potencies in cynomolgus monkey (CyM) HSC-F cells, but none of them grew significantly better than NL-DT5R. Consistently, any of the HIV-1 variants examined here did not effectively counter CyM TRIM5α as judged by single-cycle infectivity assays. Assessment of their single-cycle infectivity in simian and CyM TRIM5α-expressing feline cells in the presence of cyclosporin A (CsA) showed that intervention of CypA–CA interaction did not restore full NL-DT5R infectivity, while CsA increased infectivity of DT5R/4-3 carrying the sequence of NL4-3 CypA-binding loop up to the NL-DT5R level. Almost similar data were obtained in the experiments utilizing CypA-targeting siRNA. Together with our previous results regarding NL-DT5R, these data suggested that evasion from CypA- and APOBEC-mediated restrictions is still insufficient for HIV-1 to completely overcome the species barrier.  相似文献   

9.
10.
11.
12.
13.
Tripartite motif-containing 5 isoform-α (TRIM5α), a host restriction factor, blocks infection of some retroviruses at a post-entry, pre-integration stage in a species-specific manner. A recent report by Sakuma et al. describes a second antiretroviral activity of rhesus macaque TRIM5α, which blocks HIV-1 production through rapid degradation of HIV-1 Gag polyproteins. Here, we find that human TRIM5α limits HIV-1 production. Transient expression of TRIM5α decreased HIV-1 production, whereas knockdown of TRIM5α in human cells increased virion release. A single amino acid substitution (R437C) in the SPRY domain diminished the restriction effect. Moderate levels of human wild-type TRIM5α and a little amount of R437C mutant were incorporated into HIV-1 virions. The R437C mutant also lost restriction activity against N-tropic murine leukemia virus infection. However, the corresponding R to C mutation in rhesus macaque TRIM5α had no effect on the restriction ability. Our findings suggest human TRIM5α is an intrinsic immunity factor against HIV-1 infection. The importance of arginine at 437 aa in SPRY domain for the late restriction is species-specific.  相似文献   

14.
TRIM5α restricts retroviruses in a species-specific manner. Cyclophilin A was independently retrotransposed into the TRIM5 loci in different species, leading to the generation of antiviral TRIM5-cyclophilin A(TRIMCyp) proteins. Previously, we found that assam macaques express a TRIMCyp chimera(am TRIMCyp), along with a TRIM5α allelic protein(am TRIM5α). Herein,we investigated the antiviral activity of am TRIMCyp and am TRIM5α individually, as well as their interaction and joint effects.am TRIMCyp showed a divergent restriction pattern from am TRIM5α. Although both proteins potently restricted the replication of HIV-1, only am TRIM5α inhibited N-MLV. Remarkably, cellular anti-HIV-1 activity increased when am TRIMCyp and am TRIM5α were coexpressed, indicating a synergistic block of HIV-1 replication. Consistently, PMBCs from heterozygous am TRIM5α/TRIMCyp showed stronger resistance to HIV-1 infection than those from am TRIM5α/TRIM5α homozygotes. The anti-HIV-1 synergistic effect was dependent on the am TRIMCyp-am TRIM5α interaction. In contrast, am TRIMCyp completely abrogated the anti-N-MLVactivity mediated by am TRIM5α, showing a dominant-negative effect, indicating that the generation of am TRIMCyp was involved in the trade-off between divergent restriction activities. Our results provide a new paradigm to study functional trade-offs mediated by allelic proteins, a theoretical basis for utilizing animal models with various TRIM5 alleles, as well as novel HIV-1 gene therapy strategies.  相似文献   

15.
Cyclophilin A (CypA), a cytoplasmic, human immunodeficiency virus type 1 (HIV-1) CA-binding protein, acts after virion membrane fusion with human cells to increase HIV-1 infectivity. HIV-1 CA is similarly greeted by CypA soon after entry into rhesus macaque or African green monkey cells, where, paradoxically, the interaction decreases HIV-1 infectivity by facilitating TRIM5alpha-mediated restriction. These observations conjure a model in which CA recognition by the human TRIM5alpha orthologue is precluded by CypA. Consistent with the model, selection of a human cell line for decreased restriction of the TRIM5alpha-sensitive, N-tropic murine leukemia virus (N-MLV) rendered HIV-1 transduction of these cells independent of CypA. Additionally, HIV-1 virus-like particles (VLPs) saturate N-MLV restriction activity, particularly when the CA-CypA interaction is disrupted. Here the effects of CypA and TRIM5alpha on HIV-1 restriction were examined directly. RNA interference was used to show that endogenous human TRIM5alpha does indeed restrict HIV-1, but the magnitude of this antiviral activity was not altered by disruption of the CA-CypA interaction or by elimination of CypA protein. Conversely, the stimulatory effect of CypA on HIV-1 infectivity was completely independent of human TRIM5alpha. Together with previous reports, these data suggest that CypA protects HIV-1 from an unknown antiviral activity in human cells. Additionally, target cell permissivity increased after loading with heterologous VLPs, consistent with a common saturable target that is epistatic to both TRIM5alpha and the putative CypA-regulated restriction factor.  相似文献   

16.
TRIM5alpha is an important mediator of antiretroviral innate immunity influencing species-specific retroviral replication. Here we investigate the role of the peptidyl prolyl isomerase enzyme cyclophilin A in TRIM5alpha antiviral activity. Cyclophilin A is recruited into nascent human immunodeficiency virus type 1 (HIV-1) virions as well as incoming HIV-1 capsids, where it isomerizes an exposed proline residue. Here we show that cyclophilin A renders HIV-1 sensitive to restriction by TRIM5alpha in cells from Old World monkeys, African green monkey and rhesus macaque. Inhibition of cyclophilin A activity with cyclosporine A, or reducing cyclophilin A expression with small interfering RNA, rescues TRIM5alpha-restricted HIV-1 infectivity. The effect of cyclosporine A on HIV-1 infectivity is dependent on TRIM5alpha expression, and expression of simian TRIM5alpha in permissive feline cells renders them able to restrict HIV-1 in a cyclosporine A-sensitive way. We use an HIV-1 cyclophilin A binding mutant (CA G89V) to show that cyclophilin A has different roles in restriction by Old World monkey TRIM5alpha and owl monkey TRIM-Cyp. TRIM-Cyp, but not TRIM5alpha, recruits its tripartite motif to HIV-1 capsid via cyclophilin A and, therefore, HIV-1 G89V is insensitive to TRIM-Cyp but sensitive to TRIM5alpha. We propose that cyclophilin A isomerization of a proline residue in the TRIM5alpha sensitivity determinant of the HIV-1 capsid sensitizes it to restriction by Old World monkey TRIM5alpha. In humans, where HIV-1 has adapted to bypass TRIM5alpha activity, the effects of cyclosporine A are independent of TRIM5alpha. We speculate that cyclophilin A alters HIV-1 sensitivity to a TRIM5alpha-independent innate immune pathway in human cells.  相似文献   

17.
Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an ‘assisted evolution’ approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection.  相似文献   

18.
19.
Cyclophilin, TRIM5, and innate immunity to HIV-1   总被引:2,自引:0,他引:2  
The peptidyl-prolyl isomerase cyclophilin A (CypA) binds a proline-rich loop on the surface of HIV-1 capsid (CA). This interaction increases HIV-1 infectivity in humans but promotes an anti-HIV-1 restriction activity in non-human primates. Efforts to understand these paradoxical effects of cyclophilin, along with more targeted approaches to uncover the genetic basis for HIV-1 restriction, led to the discovery of TRIM5 (tripartite motif protein 5), a CA-specific receptor for the retroviral core. The ensuing TRIM5 publication flurry established a paradigm of innate immunity in which the protein lattice of an invading retroviral core, rather than double-stranded RNA or lipopolysaccharide, is recognized by a multimeric, cytoplasmic receptor. CypA modulates HIV-1 virion core detection by this class of innate pattern recognition molecule, apparently by inducing subtle shifts in CA conformation.  相似文献   

20.
The TRIM5alpha (tripartite motif 5alpha protein) has been linked to the cross-species restriction in human immunodeficiency virus type 1 (HIV-1) infection of non-human cells, but the mechanism by which this occurs remains to be fully elucidated. Here we demonstrate that the capsid (CA) protein of HIV-1 is more rapidly degraded in cells expressing monkey TRIM5alpha than in cells expressing human TRIM5alpha. Other proteins encoded by Gag and Pol are not subject to TRIM5alpha-mediated accelerated degradation. The accelerated CA degradation by TRIM5alpha apparently occurs via a nonproteosomal pathway. TRIM5alpha selectively accelerates degradation of the CA population, which reached the cytosol of restrictive cells, but not the CA population, which ended into the vesicular compartment. Given that cytosolic CA represents "productively" entered cores, whereas vesicular CA represents "nonproductively" entered cores, our findings suggest that TRIM5alpha interrupts the infectious pathway of HIV-1 by acting on the incoming cytosolic CA. The mode of viral entry does not influence the accelerated degradation of cytosolic CA by TRIM5alpha. Thus, this study reveals a correlation between TRIM5alpha-mediated HIV-1 restriction and a selective degradation of cytosolic CA normally associated with productive viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号