共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
In situ hybridization to the Crithidia fasciculata kinetoplast reveals two antipodal sites involved in kinetoplast DNA replication. 总被引:3,自引:0,他引:3
Kinetoplast DNA is a network of interlocked minicircles and maxicircles. In situ hybridization, using probes detected by digital fluorescence microscopy, has clarified the in vivo structure and replication mechanism of the network. The probe recognizes only nicked minicircles. Hybridization reveals prereplication kinetoplasts (with closed minicircles), donut-shaped replicating kinetoplasts (with nicked minicircles on the periphery and closed minicircles in the center), and postreplication kinetoplasts (with nicked minicircles). Replicating kinetoplasts are associated with two peripheral structures containing free minicircle replication intermediates and DNA polymerase. Replication may involve release of closed minicircles from the center of the kinetoplast and their migration to the peripheral structures, replication of the free minicircles therein, and then peripheral reattachment of the progeny minicircles to the kinetoplast. 相似文献
3.
Mutational analysis of protein binding sites involved in formation of the bacteriophage lambda attL complex. 总被引:2,自引:1,他引:2 下载免费PDF全文
Bacteriophage lambda site-specific recombination requires the formation of higher-order protein-DNA complexes to accomplish synapsis of the partner attachment (att) sites as well as for the regulation of the integration and excision reactions. The att sites are composed of a core region, the actual site of strand exchange, and flanking arm regions. The attL site consists of two core sites (C and C'), an integration host factor (IHF) binding site (H'), and three contiguous Int binding arm sites (P'1, P'2, and P'3). In this study, we employed bacteriophage P22 challenge phages to determine which protein binding sites participate in attL complex formation in vivo. The C', H', and P'1 sites were critical, because mutations in these sites severely disrupted formation of the attL complex. Mutations in the C and P'2 sites were less severe, and alteration of the P'3 site had no effect on complex formation. These results support a model in which IHF, bound to the H' site, bends the attL DNA so that the Int molecule bound to P'1 also interacts with the C' core site. This bridged complex, along with a second Int molecule bound to P'2, helps to stabilize the interaction of a third Int with the C core site. The results also indicate that nonspecific DNA binding is a significant component of the Int-core interactions and that the cooperativity of Int binding can overcome the effects of mutations in the individual arm sites and core sites. 相似文献
4.
5.
Drunken-cell footprints: nuclease treatment of ethanol-permeabilized bacteria reveals an initiation-like nucleoprotein complex in stationary phase replication origins. 下载免费PDF全文
M R Cassler J E Grimwade K C McGarry R T Mott A C Leonard 《Nucleic acids research》1999,27(23):4570-4576
The nucleoprotein complex formed on oriC, the Escherichia coli replication origin, is dynamic. During the cell cycle, high levels of the initiator DnaA and a bending protein, IHF, bind to oriC at the time of initiation of DNA replication, while binding of Fis, another bending protein, is reduced. In order to probe the structure of nucleoprotein complexes at oriC in more detail, we have developed an in situ footprinting method, termed drunken-cell footprinting, that allows enzymatic DNA modifying reagents access to intracellular nucleoprotein complexes in E.coli, after a brief exposure to ethanol. With this method, we observed in situ binding of Fis to oriC in exponentially growing cells, and binding of IHF to oriC in stationary cells, using DNase I and Bst NI endonuclease, respectively. Increased binding of DnaA to oriC in stationary phase was also noted. Because binding of DnaA and IHF results in unwinding of oriC in vitro, P1 endonuclease was used to probe for intracellular unwinding of oriC. P1 cleavage sites, localized within the 13mer unwinding region of oriC ', were dramatically enhanced in stationary phase on wild-type origins, but not on mutant versions of oriC unable to unwind. These observations suggest that most oriC copies become unwound during stationary phase, forming an initiation-like nucleoprotein complex. 相似文献
6.
7.
Old World and clade C New World arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycan's host-derived ligands 下载免费PDF全文
alpha-Dystroglycan (DG) is an important cellular receptor for extracellular matrix (ECM) proteins and also serves as the receptor for Old World arenaviruses Lassa fever virus (LFV) and lymphocytic choriomeningitis virus (LCMV) and clade C New World arenaviruses. In the host cell, alpha-DG is subject to a remarkably complex pattern of O glycosylation that is crucial for its interactions with ECM proteins. Two of these unusual sugar modifications, protein O mannosylation and glycan modifications involving the putative glycosyltransferase LARGE, have recently been implicated in arenavirus binding. Considering the complexity of alpha-DG O glycosylation, our present study was aimed at the identification of the specific O-linked glycans on alpha-DG that are recognized by arenaviruses. As previously shown for LCMV, we found that protein O mannosylation of alpha-DG is crucial for the binding of arenaviruses of distinct phylogenetic origins, including LFV, Mobala virus, and clade C New World arenaviruses. In contrast to the highly conserved requirement for O mannosylation, more generic O glycans present on alpha-DG are dispensable for arenavirus binding. Despite the critical role of O-mannosyl glycans for arenavirus binding under normal conditions, the overexpression of LARGE in cells deficient in O mannosylation resulted in highly glycosylated alpha-DG that was functional as a receptor for arenaviruses. Thus, modifications by LARGE but not O-mannosyl glycans themselves are most likely the crucial structures recognized by arenaviruses. Together, the data demonstrate that arenaviruses recognize the same highly conserved O-glycan structures on alpha-DG involved in ECM protein binding, indicating a strikingly similar mechanism of receptor recognition by pathogen- and host-derived ligands. 相似文献
8.
Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle
Positive-strand RNA viruses are the largest genetic class of viruses and include many serious human pathogens. All positive-strand RNA viruses replicate their genomes in association with intracellular membrane rearrangements such as single- or double-membrane vesicles. However, the exact sites of RNA synthesis and crucial topological relationships between relevant membranes, vesicle interiors, surrounding lumens, and cytoplasm generally are poorly defined. We applied electron microscope tomography and complementary approaches to flock house virus (FHV)-infected Drosophila cells to provide the first 3-D analysis of such replication complexes. The sole FHV RNA replication factor, protein A, and FHV-specific 5-bromouridine 5'-triphosphate incorporation localized between inner and outer mitochondrial membranes inside approximately 50-nm vesicles (spherules), which thus are FHV-induced compartments for viral RNA synthesis. All such FHV spherules were outer mitochondrial membrane invaginations with interiors connected to the cytoplasm by a necked channel of approximately 10-nm diameter, which is sufficient for ribonucleotide import and product RNA export. Tomographic, biochemical, and other results imply that FHV spherules contain, on average, three RNA replication intermediates and an interior shell of approximately 100 membrane-spanning, self-interacting protein As. The results identify spherules as the site of protein A and nascent RNA accumulation and define spherule topology, dimensions, and stoichiometry to reveal the nature and many details of the organization and function of the FHV RNA replication complex. The resulting insights appear relevant to many other positive-strand RNA viruses and support recently proposed structural and likely evolutionary parallels with retrovirus and double-stranded RNA virus virions. 相似文献
9.
Under alkaline conditions which completely degrade RNA but leave DNA intact, only a few percent of the mitochondrial DNA molecules of mouse L cells remain as intact closed circles. Approximately one-third of the closed circular molecules are nicked only once or twice, and the remainder are nicked at several sites, producing a heterogeneous distribution of fragment lengths. We have compared the products of alkali treatment of replicative intermediates with those of nonreplicating molecules, and no variation in the pattern of alkali-sensitive sites was detected. The two strands of the mitochondrial DNA duplex are both sensitive to high pH. Alkaline treatment of the two largest BamHI restriction endonuclease fragments produces specific degradation products consistent with the presence of alkali-sensitive sites at both the heavy- and light-strand replication origins. These sites may represent residues of ribonucleotide priming of the asynchronously replicated strands of mouse mitochondrial DNA. 相似文献
10.
Passmore LA Booth CR Vénien-Bryan C Ludtke SJ Fioretto C Johnson LN Chiu W Barford D 《Molecular cell》2005,20(6):855-866
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase composed of approximately 13 distinct subunits required for progression through meiosis, mitosis, and the G1 phase of the cell cycle. Despite its central role in these processes, information concerning its composition and structure is limited. Here, we determined the structure of yeast APC/C by cryo-electron microscopy (cryo-EM). Docking of tetratricopeptide repeat (TPR)-containing subunits indicates that they likely form a scaffold-like outer shell, mediating assembly of the complex and providing potential binding sites for regulators and substrates. Quantitative determination of subunit stoichiometry indicates multiple copies of specific subunits, consistent with a total APC/C mass of approximately 1.7 MDa. Moreover, yeast APC/C forms both monomeric and dimeric species. Dimeric APC/C is a more active E3 ligase than the monomer, with greatly enhanced processivity. Our data suggest that multimerisation and/or the presence of multiple active sites facilitates the APC/C's ability to elongate polyubiquitin chains. 相似文献
11.
The FhuA outer membrane protein of Escherichia coli actively transports ferrichrome, albomycin, and rifamycin CGP 4832, and confers sensitivity to microcin J25, colicin M, and the phages T1, T5, and phi80. Guided by the FhuA crystal structure and derived predictions on how FhuA might function, mutants were isolated in the cork domain (residues 1 to 160) and in the beta-barrel domain (residues 161 to 714). Deletion of the TonB box (residues 7 to 11) completely inactivated all TonB-dependent functions of FhuA. Fixation of the cork to turn 7 of the barrel through a disulfide bridge between introduced C27 and C533 residues abolished ferrichrome transport, which was restored by reduction of the disulfide bond. Deletion of residues 24 to 31, including the switch helix (residues 24 to 29), which upon binding of ferrichrome to FhuA undergoes a large structural transition (17 A) and exposes the N terminus of FhuA (TonB box) to the periplasm, reduced FhuA transport activity (79% of the wild-type activity) but conferred full sensitivity to colicin M and the phages. Duplication of residues 23 to 30 or deletion of residues 13 to 20 resulted in FhuA derivatives with properties similar to those of FhuA with a deletion of residues 24 to 31. However, a frameshift mutation that changed QSEA at positions 18 to 21 to KKAP abolished almost completely most of FhuA's activities. The conserved residues R93 and R133 among energy-coupled outer membrane transporters are thought to fix the cork to the beta-barrel by forming salt bridges to the conserved residues E522 and E571 of the beta-barrel. Proteins with the E522R and E571R mutations were inactive, but inactivity was not caused by repulsion of R93 by R522 and R571 and of R133 by R571. Point mutations in the cork at sites that move or do not move upon the binding of ferrichrome had no effect or conferred only slightly reduced activities. It is concluded that the TonB box is essential for FhuA activity. The TonB box region has to be flexible, but its distance from the cork domain can greatly vary. The removal of salt bridges between the cork and the barrel affects the structure but not the function of FhuA. 相似文献
12.
Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco 下载免费PDF全文
Cys synthesis in plants constitutes the entry of reduced sulfur from assimilatory sulfate reduction into metabolism. The catalyzing enzymes serine acetyltransferase (SAT) and O-acetylserine (OAS) thiol lyase (OAS-TL) reversibly form the heterooligomeric Cys synthase complex (CSC). Dominant-negative mutation of the CSC showed the crucial function for the regulation of Cys biosynthesis in vivo. An Arabidopsis thaliana SAT was overexpressed in the cytosol of transgenic tobacco (Nicotiana tabacum) plants in either enzymatically active or inactive forms that were both shown to interact efficiently with endogenous tobacco OAS-TL proteins. Active SAT expression resulted in a 40-fold increase in SAT activity and strong increases in the reaction intermediate OAS as well as Cys, glutathione, Met, and total sulfur contents. However, inactive SAT expression produced much greater enhancing effects, including 30-fold increased Cys levels, attributable, apparently, to the competition of inactive transgenic SAT with endogenous tobacco SAT for binding to OAS-TL. Expression levels of tobacco SAT and OAS-TL remained unaffected. Flux control coefficients suggested that the accumulation of OAS and Cys in both types of transgenic plants was accomplished by different mechanisms. These data provide evidence that the CSC and its subcellular compartmentation play a crucial role in the control of Cys biosynthesis, a unique function for a plant metabolic protein complex. 相似文献
13.
Endogenous Borna-like nucleoprotein (EBLNs) elements were recently discovered as non-retroviral RNA virus elements derived from bornavirus in the genomes of various animals. Most of EBLNs appeared to be defective, but some of primate EBLN-1 to -4, which appeared to be originated from four independent integrations of bornavirus nucleoprotein (N) gene, have retained an open reading frame (ORF) for more than 40 million years. It was therefore possible that primate EBLNs have encoded functional proteins during evolution. To examine this possibility, natural selection operating on all ORFs of primate EBLN-1 to -4 was examined by comparing the rates of synonymous and nonsynonymous substitutions. The expected number of premature termination codons in EBLN-1 generated after the divergence of Old World and New World monkeys under the selective neutrality was also examined by the Monte Carlo simulation. As a result, natural selection was not identified for the entire region as well as parts of ORFs in the pairwise analysis of primate EBLN-1 to -4 and for any branch of the phylogenetic trees for EBLN-1 to -4 after the divergence of Old World and New World monkeys. Computer simulation also indicated that the absence of premature termination codon in the present-day EBLN-1 does not necessarily support the maintenance of function after the divergence of Old World and New World monkeys. These results suggest that EBLNs have not generally encoded functional proteins after the divergence of Old World and New World monkeys. 相似文献
14.
15.
Unno M Kumauchi M Hamada N Tokunaga F Yamauchi S 《The Journal of biological chemistry》2004,279(23):23855-23858
The blue light receptor photoactive yellow protein (PYP) displays a photocycle that involves several intermediate states. Here we report resonance Raman spectroscopic investigations of the short-lived red-shifted intermediate denoted PYP(L). We have found that the Raman bands of the carbonyl C=O stretching mode nu(11) as well as the C=C stretching mode nu(13) for the chromophore can be resolved into two peaks, and the ratio of the two components varies as a function of pH with pK(a) approximately 6. The isotope effects on the resonance Raman spectra have confirmed a deprotonated cis-chromophore for the two components. The results indicate the presence of two conformations in the active site of PYP(L). The normal coordinate calculations based on the density functional theory provide a structural model for the two conformations, where the low pH form is possibly an active structure for the protonation reaction generating a following intermediate in the photocycle. 相似文献
16.
Bacterial ribonuclease P holoenzyme crosslinking analysis reveals protein interaction sites on the RNA subunit 总被引:1,自引:0,他引:1 下载免费PDF全文
The structure of the Escherichia coli ribonuclease P (RNase P) holoenzyme was investigated by site-directed attachment of an aryl azide crosslink reagent to specific sites in the protein subunit of the enzyme. The sites of crosslinking to the RNase P RNA subunit were mapped by primer extension to several conserved residues and structural features throughout the RNA. The results suggest rearrangement of current tertiary models of the RNA subunit, particularly in regions poorly constrained by earlier data. Crosslinks to the substrate precursor-tRNA were also detected, consistent with previous crosslinking results in the Bacillus subtilis RNase P holoenzyme. 相似文献
17.
Phosphorylation of human replication protein A by the DNA-dependent protein kinase is involved in the modulation of DNA replication. 总被引:6,自引:2,他引:6 下载免费PDF全文
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation. 相似文献
18.
19.
Peptidoglycan structure analysis of Lactococcus lactis reveals the presence of an L,D-carboxypeptidase involved in peptidoglycan maturation 下载免费PDF全文
Courtin P Miranda G Guillot A Wessner F Mézange C Domakova E Kulakauskas S Chapot-Chartier MP 《Journal of bacteriology》2006,188(14):5293-5298
Detailed structural analysis of Lactococcus lactis peptidoglycan was achieved by identification of its constituent muropeptides separated by reverse phase high-performance liquid chromatography. Modification of the classical elution buffer allowed direct and sensitive analysis of the purified muropeptides by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The structures of 45 muropeptides were assigned for L. lactis strain MG1363. Analysis of the muropeptide composition of an MG1363 dacB mutant showed that the dacB-encoded protein has l,d-carboxypeptidase activity and is involved in peptidoglycan maturation. 相似文献