首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways.  相似文献   

5.
Assembly of a yeast 5 S RNA gene transcription complex   总被引:17,自引:0,他引:17  
  相似文献   

6.
Dopaminergic human neuroblastoma SH-SY5Y cells were stably transformed to increase expression of alpha-synuclein, a Parkinson's disease-related protein. Transformed cells were more resistant to oxidative insults, showing a cytoprotective role of alpha-synuclein. The expression of redox chaperonins (DJ-1, HSP70, and 14-3-3) was evaluated by Western blotting. Expression of alpha-synuclein reduced HSP70 levels even in the presence of dopamine, with a twofold increase of DJ-1 in the absence of oxidants. DJ-1 is significantly reduced by dopamine, and even more by dopamine and Cu(II). Increased alpha-synuclein expression did not affect 14-3-3, although dopamine increased its level by 60% in wild-type cells. alpha-Synuclein not only upregulated DJ-1, but also shifted all DJ-1 forms to a single spot at pI=5.7 not observed in wild-type cells. Dopamine gradually restored the distribution of DJ-1 forms to a situation similar to wild-type cells, with the form at pI=6.1 progressively enriched under oxidative conditions.  相似文献   

7.
Glutaredoxin1 (GRX1) is a glutathione (GSH)-dependent thiol oxidoreductase. The GRX1/GSH system is important for the protection of proteins from oxidative damage and in the regulation of protein function. Previously we demonstrated that GRX1/GSH regulates the activity of the essential copper-transporting P1B-Type ATPases (ATP7A, ATP7B) in a copper-responsive manner. It has also been established that GRX1 binds copper with high affinity and regulates the redox chemistry of the metallochaperone ATOX1, which delivers copper to the copper-ATPases. In this study, to further define the role of GRX1 in copper homeostasis, we examined the effects of manipulating GRX1 expression on copper homeostasis and cell survival in mouse embryonic fibroblasts and in human neuroblastoma cells (SH-SY5Y). GRX1 knockout led to cellular copper retention (especially when cultured with elevated copper) and reduced copper tolerance, while in GRX1-overexpressing cells challenged with elevated copper, there was a reduction in both intracellular copper levels and copper-induced reactive oxygen species, coupled with enhanced cell proliferation. These effects are consistent with a role for GRX1 in regulating ATP7A-mediated copper export, and further support a new function for GRX1 in neuronal copper homeostasis and in protection from copper-mediated oxidative injury.  相似文献   

8.
9.
10.
Tsolou A  Lydall D 《DNA Repair》2007,6(11):1607-1617
Mrc1 (Mediator of Replication Checkpoint 1) is a component of the DNA replication fork machinery and is necessary for checkpoint activation after replication stress. In this study, we addressed the role of Mrc1 at uncapped telomeres. Our experiments show that Mrc1 contributes to the vitality of both cdc13-1 and yku70Delta telomere capping mutants. Cells with telomere capping defects containing MRC1 or mrc1(AQ), a checkpoint defective allele, exhibit similar growth, suggesting growth defects of cdc13-1 mrc1Delta are not due to checkpoint defects. This is in accordance with Mrc1-independent Rad53 activation after telomere uncapping. Poor growth of cdc13-1 mutants in the absence of Mrc1 is a result of enhanced single stranded DNA accumulation at uncapped telomeres. Consistent with this, deletion of EXO1, encoding a nuclease that contributes to single stranded DNA accumulation after telomere uncapping, improves growth of cdc13-1 mrc1Delta strains and decreases ssDNA production. Our observations show that Mrc1, a core component of the replication fork, plays an important role in telomere capping, protecting from nucleases and checkpoint pathways.  相似文献   

11.
Iron storage in yeast requires the activity of the vacuolar iron transporter Ccc1. Yeast with an intact CCC1 are resistant to iron toxicity, but deletion of CCC1 renders yeast susceptible to iron toxicity. We used genetic and biochemical analysis to identify suppressors of high iron toxicity in Δccc1 cells to probe the mechanism of high iron toxicity. All genes identified as suppressors of high iron toxicity in aerobically grown Δccc1 cells encode organelle iron transporters including mitochondrial iron transporters MRS3, MRS4, and RIM2. Overexpression of MRS3 suppressed high iron toxicity by decreasing cytosolic iron through mitochondrial iron accumulation. Under anaerobic conditions, Δccc1 cells were still sensitive to high iron toxicity, but overexpression of MRS3 did not suppress iron toxicity and did not result in mitochondrial iron accumulation. We conclude that Mrs3/Mrs4 can sequester iron within mitochondria under aerobic conditions but not anaerobic conditions. We show that iron toxicity in Δccc1 cells occurred under both aerobic and anaerobic conditions. Microarray analysis showed no evidence of oxidative damage under anaerobic conditions, suggesting that iron toxicity may not be solely due to oxidative damage. Deletion of TSA1, which encodes a peroxiredoxin, exacerbated iron toxicity in Δccc1 cells under both aerobic and anaerobic conditions, suggesting a unique role for Tsa1 in iron toxicity.  相似文献   

12.
13.
H2O2 sensing through oxidation of the Yap1 transcription factor   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

14.
15.
16.
17.
Studies on transcription of the yeast URA 2 gene   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Controlled transcription of the yeast regulatory gene GAL80   总被引:12,自引:0,他引:12  
H Shimada  T Fukasawa 《Gene》1985,39(1):1-9
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号