首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phosphoramidite, solid support method for the chemical synthesis of oligoribonucleotides containing 2'-O-phosphate at a selected position is presented. Synthesis of these oligoribonucleotides is based on uridine- and adenosine-(2'-O-phosphate)-3'-phosphoramidites, and a new condition for removal of 2'-O-phosphate protecting groups, which does not cleave internucleotide bonds. The structure of oligoribonucleotides with 2'-O-phosphate has been proven by enzymatic digestions and dephosphorylation by yeast 2'-phosphotransferase.  相似文献   

2.
A strategy was developed for the synthesis of 3'-O-beta-D-ribofuranosyl 2'-deoxythymidine derivatives using three different protecting groups, which allows the synthesis of a phosphoramidite building block for oligonucleotide synthesis. Likewise the 5'-O- and 5'-O-phosphorylated analogues were synthesized and their conformation was determined using NMR spectroscopy.  相似文献   

3.
Abstract

2-(4-Pyridyl)ethyl is a new protecting group for the internucleotidic bonds in the synthesis of deoxyribooligonucleotides by the phosphoramidite approach. This group is stable to alkali and acid conditions, and can be removed easily by two step procedures under mild conditions. The synthesis of deoxyribo-oligonucleotides by using phosphoramidite units containing 2-(4-pyridyl)ethyl group is also described.  相似文献   

4.
An improved route was developed for the preparation of the dinucleotide hybrid 5'-O-phosphoryl-2'-deoxycytidylyl-(3'--> 5')adenosine (pdCpA) 7. This simple and concise synthesis involves the successive coupling of 2-cyanoethyl N, N, N', N'-tetra- isopropylphosphorodiamidite with 4-N-benzoyl-5'-O-(4, 4'-dimethoxytrityl)-2'-deoxy-cytidine 1 and 6-N,6-N,2'-O,3'-O-tetrabenzoyladenosine 2 as the key step. Some dinucleotide derivatives bearing different protecting groups were also synthesized and the selective deprotection conditions were studied in detail. The utility and efficiency of this approach has been further demonstrated by its application to the synthesis of total DNA dinucleotide pdCpdA 17 and total RNA dinucleotide 21.  相似文献   

5.
We describe herein the practical post-modification synthesis of oligodeoxynucleotides (ODNs) containing 4,7-diaminoimidazo[5′,4′:4,5]pyrido[2,3-d]pyrimidine nucleoside (ImNN). Since the ImNN nucleoside unit possessing tribenzoyl groups on its exocyclic amino groups as the protecting group was quite unstable under acidic conditions, cleavage of its glycosidic linkage in ODN has been suggested throughout the conditions of solid-phase synthesis. As an alternative approach, we investigated a post-modification synthesis of the desired ODNs containing the ImNN unit. Starting with protected 4-amino-7-chloro-1-(2-deoxy-β-d-ribofuranosyl)imidazo[5′,4′:4,5]pyrido[2,3-d]pyrimidine derivative 1, conversion into the corresponding phosphoramidite unit was examined. The p-bromobenzoyl group (p-BrBz) was the best protecting group of 4-amino group of 1 to give the phosphoramidite unit 9 for the post-modification synthesis. After carrying out the ODN synthesis linked to the controlled pore glass (CPG) support, the support was treated with ammonium hydroxide at 55 °C to remove the protecting groups, detach the ODN form the CPG support, and convert the 7-chloro group into a desired amino group. As a result, the desired ODNs containing ImNN were obtained in good yield.  相似文献   

6.
Oligoribonucleotides containing 3'-S-phosphorothiolate linkages are valuable probes in nucleic acid biochemistry, but their accessibility has been limited because 3'-thioribonucleoside phosphoramidites have not been available. We synthesized 3'-thioribonucleoside derivatives (C, G, and U) via glycosylations of nucleoside bases with 3-S-thiobenzoyl-5-O-toluoyl-1,2-O-diacetylfuranose 5, which was obtained from 1 ,2-O-isopropylidene-5-O-toluoyl-3-trifluoromethane-sulfonyl-alpha-D-x ylofuranose 2 by SN2 displacement with sodium thiobenzoate. Additionally, a 3'-thioinosine derivative was prepared from inosine via direct modification of the ribose, analogous to the previously reported synthesis of 3'-thioadenosine, except that the intermediate 2',3'-epoxide 9 was first protected as the 5'-O-tert-butyldiphenylsilyl ether prior to subsequent synthetic steps. This hydrophobic silyl group facilitated extraction and isolation of synthetic intermediates. After removal of the protecting groups, the 3'-thionucleosides (C, G, U, and I) were treated with 2,2'-dipyridyl disulfide to protect the free thiol group as a disulfide. The 3'-thionucleosides were converted to the corresponding phosphorothioamidites using procedures analogous to those for standard phosphoramidites. The amino groups of 3'-thiocytidine and 3'-thioguanosine were protected as benzoyl and isobutyryl amides, respectively, and the 5'- and 2'-hydroxyl groups of each nucleoside were protected as dimethoxytrityl and tert-butyldimethylsilyl ethers, respectively. The 3'-thiol group was deprotected by reduction with DTT and phosphitylated to afford analytically pure 3'-S-phosphorothioamidites 15, which were incorporated into oligoribonucleotides by solid-phase synthesis. Chemical assays and mass spectrometry of the synthetic RNA showed that ribose-3'-S-phosphorothiolate linkages were installed correctly and efficiently into RNA oligonucleotides using phosphoramidite chemistry.  相似文献   

7.
It is demonstrated that not only N2- but also O6-protection of the guanine base is necessary for obtaining the oligodeoxyribonucleotides in high yields and at a high purity in the solid-phase synthesis via the (5'--> 3')-chain elongated phosphoramidite approach.  相似文献   

8.
In this paper the synthesis of an Enterococcus Faecalis teichoic acid (TA) hexamer is presented. The key kojibiosyl-glycerol phosphoramidite building block was obtained by condensation of thioglucose donors, provided with various protecting groups at the C2 hydroxyl function with an orthogonally protected glycerol acceptor. After selective deprotection, the resulting 1,2-cis-linked pseudodisaccharide acceptor was coupled to an α-directing thioglucose donor, giving the corresponding pseudotrisaccharide, which is then transformed to a phosphoramidite synthon. The kojibiosyl-glycerol phosphoramidite in combination with a glycerolphosphoramidite, an aminohexylphosphoramidite and dibenzylglycerol were coupled to a fully protected glycerol TA hexamer, using chemistry that can be amended for future automated synthesis. Global deprotection afforded the target hexamer kojibiosyl-glycerol containing TA (1).  相似文献   

9.
We herein report a convenient synthesis of 3',5'-cyclic diguanylic acid via the modified H-phosphonate approach. The 1-(4-chlorophenyl)-4-ethoxypiperidin-4-yl (Cpep) group was used as protecting group for the 2'-hydroxy functions of ribonucleosides. Complete unblocking of the fully protected 3',5'-cyclic diguanylic acid gave cdiGMP as a homogeneous compound in an excellent yield.  相似文献   

10.
A convergent synthetic approach was used to conjugate 2',5'-oligoadenylate (2-5A, p5'A2' [p5'A2'](n)()p5'A) to phosphorodiamidate morpholino oligomers (morphants). To provide requisite quantities of 2-5A starting material, commercially and readily available synthons for solid-phase synthesis were adapted for larger scale solution synthesis. Thus, the tetranucleotide 5'-phosphoryladenylyl(2'-->5')adenylyl(2'-->5')adenylyl(2'-->5')adenosine (p5'A2'p5'A2'](2)p5'A2', tetramer 2-5A, 9) was synthesized starting with 2',3'-O-dibenzoyl-N(6),N(6)-dibenzoyl adenosine prepared from commercially available 5'-O-(4-monomethoxytrityl) adenosine. Coupling with N(6)-benzoyl-5'-O-(4,4'-dimethoxytrityl)-3'-O-(tert-butyldimethylsilyl) adenosine-2'-(N,N-diisopropyl-2-cyanoethyl)phosphoramidite, followed by oxidization and deprotection, generated 5'-deprotected dimer 2-5A. Similar procedures lengthened the chain to form protected tetramer 2-5 A. The title product 9 p5'A(2'p5'A)(3) (tetramer 2-5A) was obtained through phosphorylation of the terminal 5'-hydroxy of the protected tetramer and removal of remaining protecting groups using concentrated ammonium hydroxide-ethanol (3:1, v/v) at 55 degrees C and tetrabutylammonium fluoride (TBAF) in THF at room temperature, respectively. The 2-5A-phosphorodiamidate morpholino antisense chimera 11 (2-5A-morphant) was synthesized by covalently linking an aminolinker-functionalized phosphorodiamidate morpholino oligomer with periodate oxidized 2-5A tetramer (p5'A2'[p5'A2'](2)p5'A). The resulting Schiff base was reduced with cyanoborohydride thereby transforming the ribose of the 2'-terminal nucleotide of 2-5A N-substituted morpholine. RNase L assays demonstrated that this novel 2-5A-antisense chimera had significant biological activity, thereby providing another potential tool for RNA ablation.  相似文献   

11.
A new synthetic approach to 5-phosphoramidites of 3'-aminonucleosides was developed. The methodology relies upon the use of 3'-amino-2',3'-dideoxy nucleosides as the key starting materials. The final phosphoramidite products were obtained with high yields via 2-3-step efficient chemical transformations using selective introduction of orthogonal protective groups to the 3'-aminonucleoside sugar and base moieties.  相似文献   

12.
The exocyclic amine protecting groups in oligonucleotide synthesis which require 8-16 hours at 55 degrees C for deprotection in ammonia have been replaced with more labile base protecting groups (dimethylformamidine for adenine and guanine and isobutyryl for cytosine). Using these fast oligonucleotide deprotecting groups which require 2-3 hours at 55 degrees C for complete deprotection, a new set of cyanoethyl phosphoramidite ribonucleoside monomers and supports has been developed. Ribozymes and substrate RNAs which were synthesized with these phosphoramidites were assayed and were found to have full catalytic (biological) activity.  相似文献   

13.
The triester method was adapted to the synthesis of uridylyl/3'-5'/5-methylcytidylyl/3'-5'/guanosine. As the protecting groups 4-methoxy-5,6-dihydro-2H-pyran for 2'-OH and 5'-OH groups of uridine and 2'-OH group of 5-methylcytidine, methoxymethylidene for I:3'-cis-diol system of guanosine, and benzoyl for the amino groups of 5-methylcytidine and guanosine were used. The obtained product was characterised by UV, electrophoresis, chromatography, an enzymatic digestion and alkaline hydrolysis.  相似文献   

14.
Abstract

A short multigram synthesis of 2′-O-methylpseudouridine and its phosphoramidite derivative is described which avoids the use of protecting groups on the nitrogens. A binding study of oligonucleotides containing this modification suggest an increased binding affinity to RNA when compared to oligonucleotides incorporating 2′-O-methyluridine.  相似文献   

15.
Oligodeoxynucleotides containing phosphoramidate internucleotide links 3'-OP(O)NH-5' have been prepared using standard solid phase phosphoramidite techniques. For the incorporation of the phosphoramidate linkages we have used monomer as well as dimer building blocks. With the monomer 3'-phosphoramidite building blocks, which are derived from 5'-amino-2',5'-dideoxynucleosides, it is possible to incorporate phosphoramidate links into specific positions within an oligodeoxynucleotide. Furthermore the synthesis of several dinucleoside phosphate derivatives which are linked by phosphoramidate bonds are described. The internucleotide phosphoramidate linkage was performed using the Staudinger reaction followed by a Michaelis-Arbuzov type transformation. After 3'-phosphitylation these dinucleosides are compatible with the current phosphoramidite methodology of oligodeoxynucleotide synthesis.  相似文献   

16.
4,5',8-Trimethylpsoralen was attached to the C8-position of deoxyadenosine via a sulfur atom and a five carbon atom linker. The modified deoxyadenosine was then converted to a protected phosphoramidite and used as unusual as a building block for solid phase oligodeoxyribonucleotide synthesis. The efficiency of the photoreaction of a psoralen-modified oligonucleotide to a complementary matrix strand reached more than 90% within a 1 hour irradiation time at a wavelength of 345 nm.  相似文献   

17.
Abstract

A strategy was developed for the synthesis of 3′-O-β-D-ribofuranosyl 2′-deoxythymidine derivatives using three different protecting groups, which allows the synthesis of a phosphoramidite building block for oligonucleotide synthesis. Likewise the 5′-O- and 5″-O-phosphorylated analogues were synthesized and their conformation was determined using NMR spectroscopy.  相似文献   

18.
We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.  相似文献   

19.
Oligonucleotides containing a primary amino group at their 5'-termini have been prepared and further derivatised with amino specific probes. The sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed with N-monomethoxytrityl-0-methoxydiisopropylaminophosphinyl 3-aminopropan(1)ol. After cleavage from the resin, removal of the phosphate and base protecting groups and purification gives a monomethoxytrityl-NH(CH2)3PO4-oligomer. The monomethoxytrityl group can be removed with acetic acid to give the desired amino containing oligomer. The amino group can be further derivatised with amino specific probes yielding fluorescent or biotinylated oligonucleotide products.  相似文献   

20.
A simple and stereoselective synthesis of a protected 4-(aminomethyl)-1-(2-deoxy-β-D-ribofuranosyl)-1,2,3-triazole cyanoethyl phosphoramidite was developed for the modification of synthetic oligonucleotides. The configuration of the 1,2,3-triazolyl moiety with respect to the deoxyribose was unambiguously determined in ROESY experiments. The aminomethyl group of the triazolyl nucleotide was fully functional in labelling reactions. Furthermore, the hybridization behavior of 5' triazole-terminated oligonucleotide was similar to that of 5' aminohexyl-terminated oligomer with the same sequence. Internal modifications of the oligonucleotide strands resulted in significant decrease of duplex stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号