首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Morphogenesis of vaccinia virus begins with the appearance of crescent-shaped membrane precursors of immature virions in cytoplasmic factories. During the initial characterization of the product of the L2R reading frame, we discovered that it plays an important role in crescent formation. The L2 protein was expressed early in infection and was associated with the detergent-soluble membrane fraction of mature virions, consistent with two potential membrane-spanning domains. All chordopoxviruses have L2 homologs, suggesting an important function. Indeed, we were unable to isolate an infectious L2R deletion mutant. Consequently, we constructed an inducible mutant with a conditional lethal phenotype. When L2 expression was repressed, proteolytic processing of the major core proteins and the A17 protein, which is an essential component of the immature virion membrane, failed to occur, suggesting an early block in viral morphogenesis. At 8 h after infection in the presence of inducer, immature and mature virions were abundantly seen by electron microscopy. In contrast, those structures were rare in the absence of inducer and were replaced by large, dense aggregates of viroplasm. A minority of these aggregates had short spicule-coated membranes, which resembled the beginnings of crescent formation, at their periphery. These short membrane segments at the edge of the dense viroplasm increased in number at later times, and some immature virions were seen. Although the L2 protein was not detected under nonpermissive conditions, minute amounts could account for stunted and delayed viral membrane formation. These findings suggested that L2 is required for the formation or elongation of crescent membranes.  相似文献   

2.
3.
Husain M  Moss B 《Journal of virology》2003,77(21):11754-11766
Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1(H79G), a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1(H79G) by transfection or by a novel recombinant vaccinia virus with an inducible Sar1(H79G) gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1(H79G) overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.  相似文献   

4.
African swine fever virus (ASFV) is a large double-stranded DNA virus that replicates in discrete areas in the cytosol of infected cells called viral factories. Recent studies have shown that assembling virions acquire their internal envelopes through enwrapment by membranes derived from the endoplasmic reticulum (ER). However, the mechanisms that underlie the formation of viral factories and progenitor viral membranes are as yet unclear. Analysis of the published genome of the virus revealed a conserved multigene family that encodes proteins with hydrophobic signal sequences, indicating possible translocation into the ER lumen. Strikingly, two of these genes, XP124L and Y118L, encoded proteins with KDEL-like ER retention motifs. Analysis of XP124L and Y118L gene product by biochemical and immunofluorescence techniques showed that the proteins were localized to pre-Golgi compartments and that the KEDL motif at the C terminus of pXP124L was functional. XP124L expression, in the absence of other ASFV genes, had a dramatic effect on the contents of the ER that was dependent precisely on the C-terminal sequence KEDL. The normal subcellular distribution of a number of proteins resident to this important, cellular organelle was drastically altered in cells expressing wild-type XP124L gene product. PXP124L formed unusual perinuclear structures that contained resident ER proteins, as well as proteins of the ER-Golgi intermediate compartment. The data presented here hint at a role for MGF110 gene product in preparing the ER for its role in viral morphogenesis; this and other potential functions are discussed.  相似文献   

5.
Vaccinia virus (VV) morphogenesis commences with the formation of lipid crescents that grow into spherical immature virus (IV) and then infectious intracellular mature virus (IMV) particles. Early studies proposed that the lipid crescents were synthesized de novo and matured into IMV particles that contained a single lipid bilayer (S. Dales and E. H. Mosbach, Virology 35:564–583, 1968), but a more recent study reported that the lipid crescent was derived from membranes of the intermediate compartment (IC) and contained a double lipid bilayer (B. Sodiek et al., J. Cell Biol. 121:521–541, 1993). In the present study, we used high-resolution electron microscopy to reinvestigate the structures of the lipid crescents, IV, and IMV particles in order to determine if they contain one or two membranes. Examination of thin sections of Epon-embedded, VV-infected cells by use of a high-angular-tilt series of single sections, serial-section analysis, and high-resolution digital-image analysis detected only a single, 5-nm-thick lipid bilayer in virus crescents, IV, and IMV particles that is covered by a 8-nm-thick protein coat. In contrast, it was possible to discern tightly apposed cellular membranes, each 5 nm thick, in junctions between cells and in the myelin sheath of Schwann cells around neurons. Serial-section analysis and angular tilt analysis of sections detected no continuity between virus lipid crescents or IV particles and cellular membrane cisternae. Moreover, crescents were found to form at sites remote from IC membranes—namely, within the center of virus factories and within the nucleus—demonstrating that crescent formation can occur independently of IC membranes. These data leave unexplained the mechanism of single-membrane formation, but they have important implications with regard to the mechanism of entry of IMV and extracellular enveloped virus into cells; topologically, a one-to-one membrane fusion suffices for delivery of the IMV core into the cytoplasm. Consistent with this, we have demonstrated previously by confocal microscopy that uncoated virus cores within the cytoplasm lack the IMV surface protein D8L, and we show here that intracellular cores lack the surface protein coat and lipid membrane.  相似文献   

6.
The cytoplasmic assembly of vaccinia virus begins with the transformation of a two-membraned cisterna derived from the intermediate compartment between the endoplasmic reticulum and the Golgi complex. This cisterna develops into a viral crescent which eventually forms a spherical immature virus (IV) that matures into the intracellular mature virus (IMV). Using immunoelectron microscopy, we determined the subcellular localization of p32 and p14, two membrane-associated proteins of vaccinia virus. p32 was associated with vaccinia virus membranes at all stages of virion assembly, starting with the viral crescents, as well as with the membranes which accumulated during the inhibition of assembly by rifampin. There was also low but significant labelling of membranes of some cellular compartments, especially those in the vicinity of the Golgi complex. In contrast, anti-p14 labelled neither the crescents nor the IV but gave strong labelling of an intermediate form between IV and IMV and was then associated with all later viral forms. This protein was also not significantly detected on identifiable cellular membranes. Both p32 and p14 were abundantly expressed on the surface of intact IMV. Our data are consistent with a model whereby p32 would become inserted into cellular membranes before being incorporated into the crescents whereas p14 would be posttranslationally associated with the viral outer membrane at a specific later stage of the viral life cycle.  相似文献   

7.
Crescent membranes are the first viral structures that can be discerned during poxvirus morphogenesis. The crescents consist of a lipoprotein membrane and an outer lattice scaffold, which provides uniform curvature. Relatively little is known regarding the composition of the crescent membrane or its mode of formation. Here, we show that the H7 protein, which is conserved in all vertebrate poxviruses but has no discernible functional motifs or nonpoxvirus homologs, contributes to the formation of crescents and immature virions. Synthesis of the 17-kDa H7 protein was dependent on DNA replication and occurred late during vaccinia virus infection. Unlike many late proteins, however, H7 was not incorporated into mature virions or localized in cellular organelles. To gain insight into the role of H7, an inducible mutant was constructed and shown to have a conditional lethal phenotype: H7 expression and infectious virus formation were dependent on isopropyl-beta-d-thiogalactopyranoside. In the absence of inducer, viral late proteins were made, but membrane and core proteins were not processed by the I7 protease. A block in morphogenesis was demonstrated by transmission electron microscopy: neither typical crescents nor immature virions were detected in the absence of inducer. Instead, factory areas of the cytoplasm contained large, electron-dense inclusions, some of which had partially coated membrane segments at their surfaces. Separate, lower-density inclusions containing the D13 scaffold protein and endoplasmic reticulum membranes were also present. These features are most similar to those previously seen when expression of A11, another conserved nonvirion protein, is repressed.The vertebrate poxviruses, of which vaccinia virus (VACV) is the prototype, encode about 200 proteins, of which almost half are conserved in all species (40). The conserved proteins include those that execute basic functions, which allow poxviruses to replicate and express their double-stranded DNA genomes and assemble infectious particles in the cytoplasm (25). Due to their large number, some of the conserved open reading frames (ORFs) have yet to be characterized. In the present study, we show that the product of the VACV H7R ORF contributes to the formation of the crescent membrane precursors of immature virions (IVs).Crescents are uniformly curved membranes that form within specialized regions of the cytoplasm known as factories (8, 10). The crescents envelop electron-dense granular material containing core precursor proteins to form ∼300-nm spherical IVs, which subsequently undergo internal and external architectural changes to become infectious brick-shaped mature virions (MVs) (6). Several models have been proposed for the structure and mode of formation of crescents and IVs. Transmission electron micrography revealed a single membrane bilayer covered with an external “spicule” coat (8, 24). Although evidence for two closely apposed membranes has been presented (29, 34), other studies support the original single membrane structure (5, 17-19). The outer coat was revealed by deep-etch immunogold electron microscopy to be a lattice comprised of trimers of the D13 protein (18, 36) rather than a layer of discontinuous spikes.The crescent and IV membranes are not fully characterized with regard to their composition or organization, and two main theories regarding their origin have been proposed. One idea, inspired by the spatial separation of crescent and cellular membranes in virus factories, was the de novo origin of poxvirus membranes from lipids and viral proteins (9). An alternative model, positing the derivation of crescents from cellular membranes, was based partly on the lack of precedence of de novo membrane formation in other biological systems, the finding of some viral proteins associated with membranes of the intermediate compartment between the endoplasmic reticulum (ER) and the Golgi apparatus, and the proximity of tubular structures and viral membranes (29, 33). Other studies, however, provided evidence for trafficking of proteins to the viral membrane through the ER rather than the intermediate compartment although the initial membrane nucleation event was not investigated (20, 21).Understanding the mechanism of viral membrane formation depends on the identification of the viral and cellular proteins involved. A role for the cellular coatomer and KDEL receptor in early VACV biogenesis has been suggested (43). Studies of conditional lethal VACV mutants pointed to the involvement of several viral proteins in the formation of crescent membranes. Repression of synthesis of the D13 scaffold protein mimics the effect of the drug rifampin and results in floppy-appearing membranes bordering electron-dense granular material (44). Such membranes seem otherwise normal as they can acquire the scaffold and concomitant rigid curvature within minutes after removal of rifampin and develop into IVs (26). Repression of synthesis of the integral membrane proteins A14 and A17 results in aberrant vesicular or tubular structures that differ from each other in appearance (30, 31, 39, 41). Both A14 and A17 are phosphorylated by the F10 kinase (3, 13, 39), and viral membranes are not detected when cells are infected with conditional lethal F10 mutants under nonpermissive conditions (37, 38). Viral membranes are also not observed under nonpermissive conditions when cells are infected with conditional lethal H5 (12), G5 (7), and A11 (28) mutants though their roles in this process are not yet understood. Here, we characterize the product of the H7R ORF and demonstrate that it is also involved in viral membrane formation and morphogenesis.  相似文献   

8.
The vaccinia virus A11R gene has orthologs in all known poxvirus genomes, and the A11 protein has been previously reported to interact with the putative DNA packaging protein A32 in a yeast two-hybrid screen. Using antisera raised against A11 peptides, we show that the A11 protein was (i) expressed at late times with an apparent mass of 40 kDa, (ii) not incorporated into virus particles, (iii) phosphorylated independently of the viral F10 kinase, (iv) coimmunoprecipitated with A32, and (v) localized to the viral factory. To determine the role of the A11 protein and test whether it is indeed involved in DNA packaging, we constructed a recombinant vaccinia virus with an inducible A11R gene. This recombinant was dependent on inducer for single-cycle growth and plaque formation. In the absence of inducer, viral late proteins were produced at normal levels, but proteolytic processing and other posttranslational modifications of some proteins were inhibited, suggesting a block in virus particle assembly. Consistent with this observation, electron microscopy of cells infected in the absence of inducer showed virus factories with abnormal electron-dense viroplasms and intermediate density regions associated with membranes and containing the D13 protein. However, no viral membrane crescents, immature virions, or mature virions were produced. The requirement for nonvirion protein A11 in order to make normal viral membranes was an unexpected and exciting finding, since neither the origin of these membranes nor their mechanism of formation in the cytoplasm of infected cells is understood.  相似文献   

9.
A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.  相似文献   

10.
Crescents consisting of a single lipoprotein membrane with an external protein scaffold comprise the initial structural elements of poxvirus morphogenesis. Crescents enlarge to form spherical immature virions, which enclose viroplasm consisting of proteins destined to form the cores of mature virions. Previous studies suggest that the L2 protein participates in the recruitment of endoplasmic reticulum (ER)-derived membranes to form immature virions within assembly sites of cytoplasmic factories. Here we show that L2 interacts with the previously uncharacterized 42-amino-acid A30.5 protein. An open reading frame similar in size to the one encoding A30.5 is at the same genome location in representatives of all chordopoxvirus genera. A30.5 has a putative transmembrane domain and colocalized with markers of the endoplasmic reticulum and with L2. By constructing a complementing cell line expressing A30.5, we isolated a deletion mutant virus that exhibits a defect in morphogenesis in normal cells. Large electron-dense cytoplasmic inclusions and clusters of scaffold protein-coated membranes that resemble crescents and immature virions devoid of viroplasm were seen in place of normal structures. Crescent-shaped membranes were continuous with the endoplasmic reticulum membrane and oriented with the convex scaffold protein-coated side facing the lumen, while clusters of completed spherical immature-virion-like forms were trapped within the expanded lumen. Immature-virion-like structures were more abundant in infected RK-13 cells than in BS-C-1 or HeLa cells, in which cytoplasmic inclusions were decorated with scaffold protein-coated membrane arcs. We suggest that the outer surface of the poxvirus virion is derived from the luminal side of the ER membrane.  相似文献   

11.
In 1968 it was proposed that the first membrane structures that assemble in vaccinia virus-infected cells, the crescents, are formed by a unique viral mechanism in which a single membrane bilayer is synthesized de novo. 25 years later it was suggested that the vaccinia membranes are derived from an organelle that is part of the host cell's secretory pathway, the intermediate compartment (IC), and that the viral crescents are made of two tightly apposed membranes rather than a single bilayer. Several independent studies have subsequently shown that membrane proteins of the intracellular mature virus (IMV) insert co-translationally into endoplasmic reticulum (ER) membranes, and are targeted to and retained in the IC, the compartment from which the virus acquires its membranes. Furthermore, a recent study on the entry of both the IMV and extracellular enveloped virus (EEV) suggests that these viruses do not enter by a simple fusion mechanism, consistent with the idea that both are surrounded by more than one lipid bilayer.  相似文献   

12.
The split green fluorescent protein (GFP) system was adapted for investigation of the topology of ER‐associated proteins. A 215‐amino acid fragment of GFP (S1–10) was expressed in the cytoplasm as a free protein or fused to the N‐terminus of calnexin and in the ER as an intraluminal protein or fused to the C‐terminus of calnexin. A 16‐amino acid fragment of GFP (S11) was fused to the N‐ or C‐terminus of the target protein. Fluorescence occurred when both GFP fragments were in the same intracellular compartment. After validation with the cellular proteins PDI and tapasin, we investigated two vaccinia virus proteins (L2 and A30.5) of unknown topology that localize to the ER and are required for assembly of the viral membrane. Our results indicated that the N‐ and C‐termini of L2 faced the cytoplasmic and luminal sides of the ER, respectively. In contrast both the N‐ and C‐termini of A30.5 faced the cytoplasm. The system offers advantages for quickly determining the topology of intracellular proteins: the S11 tag is similar in length to commonly used epitope tags; multiple options are available for detecting fluorescence in live or fixed cells; transfection protocols are adaptable to numerous expression systems and can enable high throughput applications.   相似文献   

13.
Recently we found by immunogold electron microscopy that protein disulfide-isomerase (PDI), a major resident protein in the lumen of the endoplasmic reticulum (ER) of many cells, is exceptionally localized in rat exocrine pancreatic cells not only in the ER but also in plasma membranes and other organelles along secretory pathway (Akagi, S., Yamamoto, A., Yoshimori, T., Masaki, R., Ogawa, R., and Tashiro, Y. (1988) J. Histochem. Cytochem. 36, 1069-1074). These observations suggest that another type of PDI, e.g. one with a defective ER retention signal, might exist and be transported in the exocrine pancreatic cells. We therefore compared biochemical and immunochemical properties of the transported PDI with the authentic ER resident PDI. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, urea-polyacrylamide gel electrophoresis, and isoelectric focusing showed that the former was indistinguishable from the latter. We prepared a polyclonal antibody against the synthetic hexapeptide, which corresponds to the carboxyl terminus of PDI containing the putative ER retention signal "KDEL." The epitopes of this antibody (anti-KDEL antibody) were located within the KDEL sequence. Anti-KDEL antibody reacted with PDI in both the plasma membranes and the ER of rat pancreatic cells in immunoblot analysis as well as in immunogold electron microscopy. These results suggest that PDI exported from the ER to the plasma membranes in rat exocrine pancreatic cells possesses the KDEL sequence.  相似文献   

14.
The vaccinia virus A30L protein is required for the association of electron-dense, granular, proteinaceous material with the concave surfaces of crescent membranes, an early step in viral morphogenesis. For the identification of additional proteins involved in this process, we used an antibody to the A30L protein, or to an epitope appended to its C terminus, to capture complexes from infected cells. A prominent 42-kDa protein was resolved and identified by mass spectrometry as the vaccinia virus G7L protein. This previously uncharacterized protein was expressed late in infection and was associated with immature virions and the cores of mature particles. In order to study the role of the G7L protein, a conditional lethal mutant was made by replacing the G7L gene with an inducible copy. Expression of G7L and formation of infectious virus was dependent on the addition of inducer. Under nonpermissive conditions, morphogenesis was blocked and viral crescent membranes and immature virions containing tubular elements were separated from the electron-dense granular viroplasm, which accumulated in large spherical masses. This phenotype was identical to that previously obtained with an inducible, conditional lethal A30L mutant. Additional in vivo and in vitro experiments provided evidence for the direct interaction of the A30L and G7L proteins and demonstrated that the stability of each one was dependent on its association with the other.  相似文献   

15.
Members of the Bcl-2 protein family modulate outer mitochondrial membrane permeability to control apoptosis. However, these proteins also localize to the endoplasmic reticulum (ER), the functional significance of which is controversial. Here we provide evidence that anti-apoptotic Bcl-2 proteins regulate the inositol 1,4,5-trisphosphate receptor (InsP(3)R) ER Ca(2+) release channel resulting in increased cellular apoptotic resistance and enhanced mitochondrial bioenergetics. Anti-apoptotic Bcl-X(L) interacts with the carboxyl terminus of the InsP(3)R and sensitizes single InsP(3)R channels in ER membranes to low [InsP(3)], enhancing Ca(2+) and InsP(3)-dependent regulation of channel activity in vitro and in vivo, reducing ER Ca(2+) content and stimulating mitochondrial energetics. The pro-apoptotic proteins Bax and tBid antagonize this effect by blocking the biochemical interaction of Bcl-X(L) with the InsP(3)R. These data support a novel model in which Bcl-X(L) is a direct effector of the InsP(3)R, increasing its sensitivity to InsP(3) and enabling ER Ca(2+) release to be more sensitively coupled to extracellular signals. As a consequence, cells are protected against apoptosis by a more sensitive and dynamic coupling of ER to mitochondria through Ca(2+)-dependent signal transduction that enhances cellular bioenergetics and preserves survival.  相似文献   

16.
Vaccinia virus (VV) membrane biogenesis is a poorly understood process. It has been proposed that cellular membranes derived from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) are incorporated in the early stages of virion assembly. We have recently shown that the VV 21-kDa (A17L gene) envelope protein is essential for the formation of viral membranes. In the present work, we identify a 15-kDa VV membrane protein encoded by the A14L gene. This protein is phosphorylated and myristylated during infection and is incorporated into the virion envelope. Both the 21- and 15-kDa proteins are found associated with cellular tubulovesicular elements related to the ERGIC, suggesting that these proteins are transported in these membranes to the nascent viral factories. When synthesis of the 21-kDa protein is repressed, organized membranes are not formed but numerous ERGIC-derived tubulovesicular structures containing the 15-kDa protein accumulate in the boundaries of the precursors of the viral factories. These data suggest that the 21-kDa protein is involved in organizing the recruited viral membranes, while the 15-kDa protein appears to be one of the viral elements participating in the membrane recruitment process from the ERGIC, to initiate virus formation.  相似文献   

17.
Poliovirus (PV) infection induces the rearrangement of intracellular membranes into characteristic vesicles which assemble into an RNA replication complex. To investigate this transformation, endoplasmic reticulum (ER) membranes in HeLa cells were modified by the expression of different cellular or viral membrane-binding proteins. The membrane-binding proteins induced two types of membrane alterations, i.e., extended membrane sheets and vesicles similar to those found during a PV infection. Cells expressing membrane-binding proteins were superinfected with PV and then analyzed for virus replication, location of membranes, viral protein, and RNA by immunofluorescence and fluorescent in situ hybridization. Cultures expressing cellular or viral membrane-binding proteins, but not those expressing soluble proteins, showed a markedly reduced ability to support PV replication as a consequence of the modification of ER membranes. The altered membranes, regardless of their morphology, were not used for the formation of viral replication complexes during a subsequent PV infection. Specifically, membrane sheets were not substrates for PV-induced vesicle formation, and, surprisingly, vesicles induced by and carrying one or all of the PV replication proteins did not contribute to replication complexes formed by the superinfecting PV. The formation of replication complexes required active viral RNA replication. The extensive alterations induced by membrane-binding proteins in the ER resulted in reduced viral protein synthesis, thus affecting the number of cells supporting PV multiplication. Our data suggest that a functional replication complex is formed in cis, in a coupled process involving viral translation, membrane modification and vesicle budding, and viral RNA synthesis.  相似文献   

18.
Vaccinia virus (VV) has a complex morphogenetic pathway whose first steps are poorly characterized. We have studied the early phase of VV assembly, when viral factories and spherical immature viruses (IVs) form in the cytoplasm of the infected cell. After freeze-substitution numerous cellular elements are detected around assembling viruses: membranes, ribosomes, microtubules, filaments, and unidentified structures. A double membrane is clearly resolved in the VV envelope for the first time, and freeze fracture reveals groups of tubules interacting laterally on the surface of the viroplasm foci. These data strongly support the hypothesis of a cellular tubulovesicular compartment, related to the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), as the origin of the first VV envelope. Moreover, the cytoskeletal vimentin intermediate filaments are found around viral factories and inside the viroplasm foci, where vimentin and the VV core protein p39 colocalize in the areas where crescents protrude. Confocal microscopy showed that ERGIC elements and vimentin filaments concentrate in the viral factories. We propose that modified cellular ERGIC membranes and vimentin intermediate filaments act coordinately in the construction of viral factories and the first VV form through a unique mechanism of viral morphogenesis from cellular elements.  相似文献   

19.
Distribution of protein disulfide isomerase in rat epiphyseal chondrocytes   总被引:1,自引:0,他引:1  
We investigated the intracellular distribution of protein disulfide isomerase (PDI) in rat epiphyseal chondrocytes by immunocytochemistry, using a post-embedding protein A-gold technique. Gold particles were localized primarily in the cisternal space of the rough endoplasmic reticulum (ER) and nuclear envelopes. The ER cisternae of the chondrocytes in all the differentiating epiphyseal zones--resting, proliferative, pre-hypertrophic, and hypertrophic--were equally and highly labeled. The labeling density of the cisternal space of the dilated ER, probably reflecting marked accumulation of secretory proteins such as procollagen, was always higher than that of the non-dilated ER. In the dilated cisternal space, gold particles were freely and evenly distributed, without preferential binding to the luminal surface of the ER membranes. We suggest that PDI catalyzes the formation of disulfide bonds of various secretory proteins, perhaps type II procollagen, in the cisternal space of the ER in epiphyseal chondrocytes. The exclusive localization of gold particles in the cisternal space of the ER and nuclear envelopes and the lack of gold particles in the Golgi apparatus, including cis-Golgi cisternae, indicate that PDI is an ER-soluble protein in the chondrocytes and is presumably sorted out in some pre-Golgi compartment and not transported to the Golgi apparatus.  相似文献   

20.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号