首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophils are prominent participants in the joint inflammation of human rheumatoid arthritis (RA) patients, but the extent of their role in the inductive phase of joint inflammation is unknown. In the K/BxN mouse RA model, transfer of autoreactive Ig from the K/BxN mouse into mice induces a rapid and profound joint-specific inflammatory response reminiscent of human RA. We observed that after K/BxN serum transfer, the earliest clinical signs of inflammation in the ankle joint correlated with the presence of neutrophils in the synovial regions of recipient mouse ankle joints. In this study, we investigated the role of neutrophils in the early inflammatory response to transferred arthritogenic serum from the K/BxN transgenic mouse. Mice were treated with a neutrophil-depleting mAb before and following transfer of arthritogenic serum and scored for clinical indications of inflammation and severity of swelling in ankle joints and front paws. In the absence of neutrophils, mice were completely resistant to the inflammatory effects of K/BxN serum. Importantly, depletion of neutrophils in diseased recipient mice up to 5 days after serum transfer reversed the inflammatory reaction in the joints. Transfer of serum into mice deficient in the generation of nitrogen or oxygen radicals (inducible NO synthase 2 or gp91(phox) genes, respectively) gave normal inflammatory responses, indicating that neither pathway is essential for disease induction. These studies have identified a critical role for neutrophils in initiating and maintaining inflammatory processes in the joint.  相似文献   

2.
In the K/BxN mouse model of arthritis, autoantibodies against glucose-6-phosphate isomerase cause joint-specific inflammation and destruction. We have shown using micro-positron emission tomography that these glucose-6-phosphate isomerase-specific autoantibodies rapidly localize to distal joints of mice. In this study we used micro-positron emission tomography to delineate the stages involved in the development of arthritis. Localization of Abs to the joints depended upon mast cells, neutrophils, and FcRs, but not on C5. Surprisingly, anti-type II collagen Abs alone did not accumulate in the distal joints, but could be induced to do so by coinjection of irrelevant preformed immune complexes. Control Abs localized to the joint in a similar manner. Thus, immune complexes are essential initiators of arthritis by sequential activation of neutrophils and mast cells to allow Abs access to the joints, where they must bind a target Ag to initiate inflammation. Our findings support a four-stage model for the development of arthritis and identify checkpoints where the disease is reversible.  相似文献   

3.
Spontaneous arthritis in the KRN transgenic mouse (K/BxN) model is due to the autoreactivity of the transgenic TCR and subsequent induction of autoantibodies directed against glucose-6-phosphate isomerase. These autoantibodies transfer clinically apparent arthritis into most recipient mouse strains and systemic catabolism of the transferred Abs attenuates paw swelling. Although mice deficient in the common gamma-chain of the FcgammaR did not show clinical synovitis after receiving K/BxN sera, erosive lesions in the bone still developed. Further analysis demonstrated that FcgammaRII(-/-) mice manifested accelerated arthritis whereas the FcgammaRIII(-/-) mice had a more slowly progressing arthritis. Paw swelling required FcgammaR expression by bone marrow-derived cells and mast cells substantially contributed to the acute phase of paw swelling. In the K/BxN serum transfer model of arthritis, there is a clinically apparent acute phase, which is modulated by FcgammaRII and FcgammaRIII, and a subacute component, which results in bone erosion, even in the absence of FcgammaR signaling.  相似文献   

4.
K/BxN serum-induced passive arthritis was reported to depend on the activation of mast cells, triggered by the activating IgG receptor FcγRIIIA, when engaged by IgG1 autoantibodies present in K/BxN serum. This view is challenged by the fact that FcγRIIIA-deficient mice still develop K/BxN arthritis and because FcγRIIIA is the only activating IgG receptor expressed by mast cells. We investigated the contribution of IgG receptors, IgG subclasses, and cells in K/BxN arthritis. We found that the activating IgG2 receptor FcγRIV, expressed only by monocytes/macrophages and neutrophils, was sufficient to induce disease. K/BxN arthritis occurred not only in mast cell-deficient W(sh) mice, but also in mice whose mast cells express no activating IgG receptors. We propose that at least two autoantibody isotypes, IgG1 and IgG2, and two activating IgG receptors, FcγRIIIA and FcγRIV, contribute to K/BxN arthritis, which requires at least two cell types other than mast cells, monocytes/macrophages, and neutrophils.  相似文献   

5.
Intraarticular gene transfer of cyclin-dependent kinase (CDK) inhibitors to suppress synovial cell cycling has shown efficacy in treating animal models of rheumatoid arthritis. Endogenous CDK inhibitors also modulate immune function via a CDK-independent pathway. Accordingly, systemic administration of small molecules that inhibit CDK may or may not ameliorate arthritis. To address this issue, alvocidib (flavopiridol), known to be tolerated clinically for treating cancers, and a newly synthesized CDK4/6-selective inhibitor were tested for antiarthritic effects. In vitro, they inhibited proliferation of human and mouse synovial fibroblasts without inducing apoptosis. In vivo, treatment of collagen-induced arthritis mice with alvocidib suppressed synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII were maintained. Treatment was effective even when therapeutically administered. Treated mice developed arthritis after termination of treatment. Thus, immune responses to CII were unimpaired. The same treatment ameliorated arthritis induced by K/BxN serum transfer to lymphocyte-deficient mice. Similarly, the CDK4/6-selective inhibitor suppressed collagen-induced arthritis. Both small-molecule CDK inhibitors were effective in treating animal models of rheumatoid arthritis not by suppressing lymphocyte function. Thus, the two small-molecule CDK inhibitors ameliorated arthritis models in a distinctive way, compared with other immunosuppressive drugs.  相似文献   

6.

Introduction

Interleukin (IL)-33 is a cytokine of the IL-1 family, which signals through the ST2 receptor. Previous work suggested implication of the IL-33/ST2 axis in the pathogenesis of human and mouse arthritis. Here, we directly investigated the role of endogenous IL-33 in K/BxN serum transfer-induced arthritis by using IL-33 knockout (KO) mice.

Methods

Arthritis was induced by injection of complete K/BxN serum or purified IgG. Disease severity was monitored by clinical and histological scoring.

Results

K/BxN serum transfer induced pronounced arthritis with similar incidence and severity in IL-33 KO and wild-type (WT) mice. In contrast, disease development was significantly reduced in ST2 KO mice. IL-33 expression in synovial tissue was comparable in arthritic WT and ST2 KO mice, and absent in IL-33 KO mice. Transfer of purified arthritogenic IgG instead of complete K/BxN serum also resulted in similar arthritis severity in IL-33 KO and WT mice, excluding a contribution of IL-33 contained in the serum of donor mice to explain this result. We investigated additional potential confounding factors, including purity of genetic background, but the mechanisms underlying reduced arthritis in ST2 KO mice remained unclear.

Conclusions

The data obtained with IL-33 KO mice indicate that endogenous IL-33 is not required for the development of joint inflammation in K/BxN serum transfer-induced arthritis. On the contrary, arthritis severity was reduced in ST2 KO mice. This observation might relate to IL-33 independent effects of ST2, and/or reveal the existence of confounding variables affecting the severity of joint inflammation in these KO strains.  相似文献   

7.
Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of CD4(+)CD25(+) regulatory T (T(reg)) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the T(reg) cells in K/BxN mice. These mice contained a higher percentage of Foxp3(+) T(reg) cells among the CD4(+) T cells than their BxN littermates. These T(reg) cells were anergic and efficiently suppressed the proliferation of na?ve CD4(+) T cells and cytokine production by effector CD4(+) T cells in vitro. Antibody-mediated depletion of CD25(+) cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the T(reg) cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.  相似文献   

8.

Introduction

Both murine and human genome-wide association studies have implicated peptidyl arginine deiminase (PAD4) as a susceptibility gene in rheumatoid arthritis (RA). In addition, patients with RA commonly have autoantibodies which recognize PAD4 or and/or citrullinated peptides. This study aims to evaluate the role of PAD4 in the effector phase of arthritis.

Methods

PAD4 knock out (KO) and wild type (WT) C57BL/6J mice were injected with K/BxN sera to induce disease. Progression of disease was monitored by measuring paw and ankle swelling and clinical indexes of disease, and pathogenesis was assessed by indexing of clinical progression on paws collected from WT and PAD4 KO mice injected with K/BxN serum. PAD4 activity was determined by visualization of neutrophil extracellular traps (NETs) and immunohistological analysis of histone citrullination.

Results

PAD4 activity is readily detectable in the inflamed synovium of WT but not PAD4 deficient animals, as demonstrated by histone citrullination and NET formation. However, PAD4 WT and KO animals develop K/BxN serum transfer disease with comparable severity and kinetics, with no statistically significant differences noted in clinical scores, swelling, joint erosion or joint invasion.

Conclusions

PAD4 WT and KO mice develop disease in the K/BxN serum transfer model of arthritis with similar severity and kinetics, indicating that PAD4 is dispensable in this effector phase model of disease.  相似文献   

9.
目的分析高脂食物对动脉硬化合并类风湿关节炎小鼠肠道微生物的影响,了解动脉硬化合并类风湿关节炎小鼠肠道微生物的变化。方法 8周龄ApoE~(-/-)小鼠饲喂高脂食物和普通食物至17周龄来诱发动脉硬化症状,再通过给17周龄ApoE~(-/-)小鼠腹腔注射抗6-磷酸葡萄糖异构酶(glucose-6-phosphate isomerase,GPI)抗体呈阳性的K/BxN血清,从而诱导其产生类风湿关节炎症状。通过Illumina HiSeq平台对各组小鼠粪便进行16S rDNA V4区测序,分析动脉硬化合并类风湿关节炎小鼠肠道微生物的变化。结果 ApoE~(-/-)小鼠饲喂高脂食物后,其血清低密度脂蛋白胆固醇(LDL-C)浓度和血清总胆固醇(TC)浓度均显著升高,主动脉内膜斑块面积比喂普通食物的ApoE~(-/-)小鼠显著增加,表明ApoE~(-/-)小鼠饲喂高脂食物后引起更显著的动脉硬化症状。再通过腹腔注射抗GPI抗体呈阳性的K/BxN血清,各组ApoE~(-/-)小鼠均出现关节肿胀,饲喂高脂食物的ApoE~(-/-)小鼠其踝关节宽度和临床评分(clinical score)低于饲喂普通食物组小鼠。OTU数、Shannon指数和Simpson指数显示高脂食物和K/BxN血清处理组ApoE~(-/-)小鼠肠道菌群多样性降低,Firmicutes/Bacteroidetes值升高,t-test分析显示在属水平上,Prevotellaceae_UCG-001显著降低,Ruminiclostridium_6显著升高。t-test分析和Firmicutes/Bacteroidetes比值显示ApoE~(-/-)小鼠肠道菌群结构紊乱。结论高脂食物使ApoE~(-/-)小鼠的肠道菌群组成和结构发生改变,导致ApoE~(-/-)小鼠的动脉硬化症状加重,类风湿关节炎症状减轻。提示肠道微生物组成和结构的改变,可能与动脉硬化合并类风湿关节炎发病机制相关。  相似文献   

10.
IntroductionAutoreactive T cells are a central element in many systemic autoimmune diseases. The generation of these pathogenic T cells is instructed by antigen-presenting cells (APCs). However, signaling pathways in APCs that drive autoimmune diseases, such as rheumatoid arthritis, are not understood.MethodsWe measured phenotypic maturation, cytokine production and induction of T cell proliferation of APCs derived from wt mice and mice with a myeloid-specific deletion of PTEN (myeloid PTEN-/-) in vitro and in vivo. We induced collagen-induced arthritis (CIA) and K/BxN serum transfer arthritis in wt and myeloid-specific PTEN-/- mice. We measured the cellular composition of lymph nodes by flow cytometry and cytokines in serum and after ex vivo stimulation of T cells.ResultsWe show that myeloid-specific PTEN-/- mice are almost protected from CIA. Myeloid-specific deletion of PTEN leads to a significant reduction of cytokine expression pivotal for the induction of systemic autoimmunity such as interleukin (IL)-23 and IL-6, leading to a significant reduction of a Th17 type of immune response characterized by reduced production of IL-17 and IL-22. In contrast, myeloid-specific PTEN deficiency did not affect K/BxN serum transfer arthritis, which is independent of the adaptive immune system and solely depends on innate effector functions.ConclusionsThese data demonstrate that the presence of PTEN in myeloid cells is required for the development of CIA. Deletion of PTEN in myeloid cells inhibits the development of autoimmune arthritis by preventing the generation of a pathogenic Th17 type of immune response.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0742-y) contains supplementary material, which is available to authorized users.  相似文献   

11.
T cell homeostasis is a physiological function of the immune system that maintains a balance in the numbers and ratios of T cells at the periphery. A self-MHC/self-peptide ligand can induce weak (covert) signals via the TCR, thus providing an extended lifespan for naive T cells. A similar mechanism is responsible for the restoration of immune homeostasis in severe lymphopenic conditions such as those following irradiation or chemotherapy, or upon transfer of lymphocytes to nu/nu or SCID mice. To date, the genetic backgrounds of donor and recipient SCID mice were unmatched in all autoimmune arthritis transfer experiments, and the recovery of lymphoid cells in the host has not been followed. In this study, we present the adoptive transfer of proteoglycan (PG)-induced arthritis using unseparated and T or B cell-depleted lymphocytes from arthritic BALB/c donors to genetically matched syngeneic SCID recipient mice. We demonstrate that selectively recovered lymphoid subsets determine the clinical and immunological status of the recipient. We found that when T cells were depleted (>98% depleted), B cells did not produce PG-specific anti-mouse (auto) Abs unless SCID mice received a second Ag (PG) injection, which promoted the recovery of Ag-specific CD4(+) Th1 cells. Reciprocally, as a result of B cell recovery, high levels of serum anti-PG Abs were found in SCID mice that received B cell-depleted (>99% depleted) T lymphocytes. Our results indicate a selective and highly effective cooperation between CD4(+) T cells and B lymphocytes that is required for the restoration of pathological homeostasis and development of autoimmune arthritis in SCID mice.  相似文献   

12.
Spleen tyrosine kinase (Syk) is a non-receptor protein kinase present in abundance in a wide range of hematopoietic cells. Syk reportedly plays a crucial role in immune signaling in B cells and cells bearing Fcγ-activation receptors. The role of syk in osteoblastic differentiation has not been well elucidated. We report herein the role of syk in osteoblastic differentiation. We investigated the effects of two syk inhibitors on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. Expression of syk was detected in these two cell lines. Two syk inhibitors stimulated mRNA expression of osteoblastic markers (ALP, Runx2, Osterix). Mineralization of extracellular matrix was also promoted by treatment with syk inhibitors. Knockdown of Syk caused increased mRNA expression of osteoblastic markers. In addition, syk inhibitor and knockdown of Syk suppressed phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase Cα (PKCα). Our results indicate that syk might regulate osteoblastic differentiation through MAPK and PKCα.  相似文献   

13.
The immunopathogenic mechanisms mediating inflammation in multiorgan autoimmune diseases may vary between the different target tissues. We used the K/BxN TCR transgenic mouse model to investigate the contribution of CD4(+) T cells and β(2) integrins in the pathogenesis of autoimmune arthritis and endocarditis. Depletion of CD4(+) T cells following the onset of arthritis specifically prevented the development of cardiac valve inflammation. Genetic absence of β(2) integrins had no effect on the severity of arthritis and unexpectedly increased the extent of cardiovascular pathology. The exaggerated cardiac phenotype of the β(2) integrin-deficient K/BxN mice was accompanied by immune hyperactivation and was linked to a defect in regulatory T cells. These findings are consistent with a model in which the development of arthritis in K/BxN mice relies primarily on autoantibodies, whereas endocarditis depends on an additional contribution of effector T cells. Furthermore, strategies targeting β(2) integrins for the treatment of systemic autoimmune conditions need to consider not only the role of these molecules in leukocyte recruitment to sites of inflammation, but also their impact on the regulation of immunological tolerance.  相似文献   

14.
The antimalarial drug artemisinin and its derivatives exhibit potent immunosuppressive activity in several autoimmune disease models, however the mechanisms are not well-understood. This study was designed to investigate the therapeutic effects and the underlying mechanisms of the artemisinin analog artesunate using the K/BxN mouse model of rheumatoid arthritis. The well-studied disease mechanisms of K/BxN model allowed us to pinpoint the effect of artesunate on disease. Artesunate treatment prevented arthritis development in young K/BxN mice by inhibiting germinal center (GC) formation and production of autoantibodies. In adult K/BxN mice with established arthritis, artesunate diminished GC B cells in a few days. However, artesunate did not affect the follicular helper T cells (Tfh). In contrast to the spontaneous K/BxN model, artesunate treatment exerted minor influence on K/BxN serum transfer induced arthritis suggesting that artesunate has minimal effect on inflammatory responses downstream of antibody production. Finally, we showed that artesunate preferentially inhibits proliferating GC B cells. These results identify GC B cells as a target of artesunate and provide a new rationale for using artemisinin analogues to treat autoimmune diseases mediated by autoantibodies.  相似文献   

15.
Rheumatoid arthritis is an autoimmune disease characterized by hyperplasia of the synovial lining and destruction of cartilage and bone. Recent studies have suggested that a lack of apoptosis contributes to the hyperplasia of the synovial lining and to the failure in eliminating autoreactive cells. Mice lacking Fas or Bim, two pro-apoptotic proteins that mediate the extrinsic and intrinsic death cascades, respectively, develop enhanced K/BxN serum transfer-induced arthritis. Since the pro-apoptotic protein Bid functions as an intermediate between the extrinsic and intrinsic apoptotic pathways, we examined the role that it plays in inflammatory arthritis. Mice deficient in Bid (Bid-/-) show a delay in the resolution of K/BxN serum transfer-induced arthritis. Bid-/- mice display increased inflammation, bone destruction, and pannus formation compared to wild-type mice. Furthermore, Bid-/- mice have elevated levels of CXC chemokine and IL-1β in serum, which are associated with more inflammatory cells throughout the arthritic joint. In addition, there are fewer apoptotic cells in the synovium of Bid-/- compared to Wt mice. These data suggest that extrinsic and intrinsic apoptotic pathways cooperate through Bid to limit development of inflammatory arthritis.  相似文献   

16.
In K/BxN mice, anti-glucose-6-phosphate isomerase (G6PI) IgG antibodies (Abs) cause joint-specific inflammation and destruction. Anti-G6PI Abs are also present in humans with inflammatory arthritis, especially among patients with rheumatoid arthritis (RA). A contributing factor to the induction of such autoantibodies may be upregulated expression of the corresponding antigen G6PI in affected tissues and/or increased levels of G6PI in the circulation. To determine G6PI levels and the presence of free G6PI and/or G6PI-containing immune complexes in sera and synovial fluids (SF) of patients with different arthritides, serum and SF obtained concomitantly from 91 clinically well-defined arthritis patients were assessed in a blinded manner for G6PI enzymatic assay and for G6PI protein concentration by ELISA. Sera and SF from patients with immune-based inflammatory arthritis contained significantly higher levels of G6PI enzymatic activity compared to sera or SF from patients with non-immune-based inflammatory arthritis or healthy controls. In addition, significantly higher levels of total G6PI protein concentration (including both enzymatically active and inactive forms) were present in sera of RA patients vs. those with other immune-based or non-immune-based inflammatory arthritis.G6PI in sera and SF were present both as G6PI-containing immune complexes and as free G6PI, with the majority of free G6PI existing as tetramers with lesser amounts of dimers and monomers. Levels of G6PI enzymatic activity in the sera of most immune-based inflammatory arthritis patients are elevated and may reflect ongoing inflammation and cell destruction. The high serum levels of enzymatically inactive forms of G6PI in RA relative to those in other arthritic diseases are partially due to G6PI-containing immune complexes, a portion of which also contains C1q. Overall, our study supports the notion that elevated G6PI levels present in patients with immune-based inflammatory arthritis may contribute to elevated levels of anti-G6PI Abs and G6PI/anti-G6PI immune complexes. This, in turn, may trigger production of proinflammatory cytokines and perpetuate the inflammatory process.  相似文献   

17.
The aryl hydrocarbon receptor (AHR) controls several inflammatory and metabolic pathways involved in various diseases, including the development of arthritis. Here, we investigated the role of AHR activation in IL-22-dependent acute arthritis using the K/BxN serum transfer model. We observed an overall reduction of cytokine expression in Ahr-deficient mice, along with decreased signs of joint inflammation. Conversely, we report worsened arthritis symptoms in Il-22 deficient mice. Pharmacological stimulation of AHR with the agonist VAG539, as well as injection of recombinant IL-22, given prior arthritogenic triggering, attenuated inflammation and reduced joint destruction. The protective effect of VAG539 was abrogated in Il-22 deficient mice. Finally, conditional Ahr depletion of Rorc-expressing cells was sufficient to attenuate arthritis, thereby uncovering a previously unsuspected role of AHR in type 3 innate lymphoid cells during acute arthritis.  相似文献   

18.
Interleukin-17 acts independently of TNF-alpha under arthritic conditions   总被引:2,自引:0,他引:2  
The proinflammatory T cell cytokine IL-17 is a potent inducer of other cytokines such as IL-1 and TNF-alpha. The contribution of TNF in IL-17-induced joint inflammation is unclear. In this work we demonstrate using TNF-alpha-deficient mice that TNF-alpha is required in IL-17-induced joint pathology under naive conditions in vivo. However, overexpression of IL-17 aggravated K/BxN serum transfer arthritis to a similar degree in TNF-alpha-deficient mice and their wild-type counterparts, indicating that the TNF dependency of IL-17-induced pathology is lost under arthritic conditions. Also, during the course of the streptococcal cell wall-induced arthritis model, IL-17 was able to enhance inflammation and cartilage damage in the absence of TNF. Additional blocking of IL-1 during IL-17-enhanced streptococcal cell wall-induced arthritis did not reduce joint pathology in TNF-deficient mice, indicating that IL-1 is not responsible for this loss of TNF dependency. These data provide further understanding of the cytokine interplay during inflammation and demonstrate that, despite a strong TNF dependency under naive conditions, IL-17 acts independently of TNF under arthritic conditions.  相似文献   

19.
PD-1, a member of the CD28 family of immune regulatory molecules, is expressed on activated T cells, interacts with its ligands, PD-L1/B7-H1 and PD-L2/B7-DC, on other cells, and delivers inhibitory signals to the T cell. We studied the role of this pathway in modulating autoreactive T cell responses in two models of myocarditis. In a CD8(+) T cell-mediated adoptive transfer model, we found that compared with Pd1(+/+) CD8(+) T cells, Pd1(-/-) CD8(+) T cells cause enhanced disease, with increased inflammatory infiltrate, particularly rich in neutrophils. Additionally, we show enhanced proliferation in vivo and enhanced cytotoxic activity of PD-1-deficient T lymphocytes against myocardial endothelial cells in vitro. In experimental autoimmune myocarditis, a disease model dependent on CD4(+) T cells, we show that mice lacking PD-1 develop enhanced disease compared with wild-type mice. PD-1-deficient mice displayed increased inflammation, enhanced serum markers of myocardial damage, and an increased infiltration of inflammatory cells, including CD8(+) T cells. Together, these studies show that PD-1 plays an important role in limiting T cell responses in the heart.  相似文献   

20.

Introduction

Interleukin (IL)-36 refers to three related IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, that bind to the IL-36 receptor (IL-36R). IL-36 exerts proinflammatory effects in skin and lung and stimulates T cell responses. In the present study, we examined the expression and function of IL-36R and its ligands in experimental arthritis.

Methods

Collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum transfer-induced arthritis were induced according to standard protocols. Messenger RNA levels for IL-36R and its ligands in the joints of mice with CIA were determined by RT-qPCR. Mice with CIA were injected with a blocking monoclonal anti-IL-36R, a blocking anti-IL-1RI, or their isotype-matched control antibodies at the time of arthritis onset. Anti-IL-36R or control antibodies were also injected at the time of AIA induction. Finally, IL-36R-deficient mice were examined in AIA and serum transfer-induced arthritis. The development and severity of arthritis were assessed by clinical and histological scoring.

Results

IL-36R, IL-36Ra and IL-36γ mRNA were detected in the joints of mice with CIA, but their levels did not correlate with arthritis severity. As opposed to anti-IL-1RI antibody treatment, the injection of an anti-IL-36R antibody was devoid of effect on the development and severity of CIA. The severity of joint inflammation and structural damage in AIA was also unaltered by anti-IL-36R antibody treatment. Finally, the severity of AIA and K/BxN serum transfer-induced arthritis was similar in IL-36R-deficient and wild-type mice.

Conclusions

The development and severity of experimental arthritis are independent of IL-36R signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号