首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All coxsackie B (CB) viruses can initiate infection by attaching to the coxsackievirus and adenovirus receptor (CAR). Although some CB isolates also bind to decay-accelerating factor (DAF), the role of DAF interaction during infection remains uncertain. We recently observed that CAR in polarized epithelial cells is concentrated at tight junctions, where it is relatively inaccessible to virus. In the experiments reported here we found that, unlike CAR, DAF was present on the apical surface of polarized cells and that DAF-binding isolates of CB3 and CB5 infected polarized epithelial cells more efficiently than did isolates incapable of attaching to DAF. Virus attachment and subsequent infection of polarized cells by DAF-binding isolates were prevented in the presence of anti-DAF antibody. Serial passage on polarized cell monolayers selected for DAF-binding virus variants. Taken together, these results indicate that interaction with DAF on the apical surface of polarized epithelial cells facilitates infection by a subset of CB virus isolates. The results suggest a possible role for DAF in infection of epithelial cells at mucosal surfaces.  相似文献   

2.
The glycosylphosphatidylinositol (GPI)-anchored complement regulatory protein decay-accelerating factor (DAF) is used by a number of enteroviruses as a receptor during infection. DAF and other GPI-anchored proteins can be found in cholesterol-rich ordered domains within the plasma membrane that are known as "lipid rafts." We have shown, by using drugs to specifically inhibit various endocytosis routes, that infection by a DAF-using strain of echovirus 11 (EV11) is dependent upon cholesterol and an intact cytoskeleton, whereas a non-DAF-using mutant derived from it was unaffected by these drugs. Using RNA transfection and virus-binding assays, we have shown that this requirement for cholesterol, the actin cytoskeleton, and the microtubule network occurs postbinding of the virus but prior to uncoating of the RNA, indicating a role during virus entry. Confocal microscopy of virus infection supported the role of cholesterol and the cytoskeleton during entry. In addition, [(35)S]methionine-labeled DAF-using EV11, but not the non-DAF-using EV11, could be copurified with lipid raft components during infection after Triton X-100 extraction. These data indicate that DAF usage by EV11 enables the virus to associate with lipid rafts and enter cells through this novel route.  相似文献   

3.
We have used X-ray crystallography to determine the structure of a decay accelerating factor (DAF)-binding, clinic-derived isolate of echovirus 11 (EV11-207). The structures of the capsid proteins closely resemble those of capsid proteins of other picornaviruses. The structure allows us to interpret a series of amino acid changes produced by passaging EV11-207 in different cell lines as highlighting the locations of multiple receptor-binding sites on the virion surface. We suggest that a DAF-binding site is located at the fivefold axes of the virion, while the binding site for a distinct but as yet unidentified receptor is located within the canyon surrounding the virion fivefold axes.  相似文献   

4.
Hepatitis A virus (HAV) is an enterically transmitted virus that replicates predominantly in hepatocytes within the liver before excretion via bile through feces. Hepatocytes are polarized epithelial cells, and it has been assumed that the virus load in bile results from direct export of HAV via the apical domain of polarized hepatocytes. We have developed a subclone of hepatocyte-derived HepG2 cells (clone N6) that maintains functional characteristics of polarized hepatocytes but displays morphology typical of columnar epithelial cells, rather than the complex morphology that is typical of hepatocytes. N6 cells form microcolonies of polarized cells when grown on glass and confluent monolayers of polarized cells on semipermeable membranes. When N6 microcolonies were exposed to HAV, infection was restricted to peripheral cells of polarized colonies, whereas all cells could be infected in colonies of nonpolarized HepG2 cells (clone C11) or following disruption of tight junctions in N6 colonies with EGTA. This suggests that viral entry occurs predominantly via the basolateral plasma membrane, consistent with uptake of virus from the bloodstream after enteric exposure, as expected. Viral export was also found to be markedly vectorial in N6 but not C11 cells. However, rather than being exported from the apical domain as expected, more than 95% of HAV was exported via the basolateral domain of N6 cells, suggesting that virus is first excreted from infected hepatocytes into the bloodstream rather than to the biliary tree. Enteric excretion of HAV may therefore rely on reuptake and transcytosis of progeny HAV across hepatocytes into the bile. These studies provide the first example of the interactions between viruses and polarized hepatocytes.  相似文献   

5.
Enteroviruses invade their hosts by crossing the intestinal epithelium. We have examined the mechanism by which echovirus 1 (EV1) enters polarized intestinal epithelial cells (Caco-2). Virus binds to VLA-2 on the apical cell surface and moves rapidly to early endosomes. Using inhibitory drugs, dominant negative mutants, and small interfering RNAs (siRNAs) to block specific endocytic pathways, we found that virus entry requires dynamin GTPase and membrane cholesterol but is independent of both clathrin- and caveolin-mediated endocytosis. Instead, infection requires factors commonly associated with macropinocytosis, including amiloride-sensitive Na+/H+ exchange, protein kinase C, and C-terminal-binding protein-1 (CtBP1); furthermore, EV1 accumulates rapidly in intracellular vesicles with dextran, a fluid-phase marker. These results suggest a role for macropinocytosis in the process by which EV1 enters polarized cells to initiate infection.  相似文献   

6.
Treatment with cytochalasin D, a drug that acts by inducing the depolymerization of the actin cytoskeleton, selectively blocked endocytosis of membrane bound and fluid phase markers from the apical surface of polarized MDCK cells without affecting the uptake from the basolateral surface. Thus, in MDCK cell transformants that express the VSV G protein, cytochalasin blocked the internalization of an anti-G mAb bound to apical G molecules, but did not reduce the uptake of antibody bound to the basolateral surface. The selective effect of cytochalasin D on apical endocytosis was also demonstrated by the failure of the drug to reduce the uptake of 125I-labeled transferrin, which occurs by receptor-mediated endocytosis, via clathrin-coated pits, almost exclusively from the basolateral surface. The actin cytoskeleton appears to play a critical role in adsorptive as well as fluid phase apical endocytic events, since treatment with cytochalasin D prevented the apical uptake of cationized ferritin, that occurs after the marker binds to the cell surface, as well as uptake of Lucifer yellow, a fluorescent soluble dye. Moreover, the drug efficiently blocked infection of the cells with influenza virus, when the viral inoculum was applied to the apical surface. On the other hand, it did not inhibit the basolateral uptake of Lucifer yellow, nor did it prevent infection with VSV from the basolateral surface, or with influenza when this virus was applied to monolayers in which the formation of tight junctions had been prevented by depletion of calcium ions. EM demonstrated that cytochalasin D leads to an increase in the number of coated pits in the apical surface where it suppresses the pinching off of coated vesicles. In addition, in drug-treated cells cationized ferritin molecules that were bound to microvilli were not cleared from the microvillar surface, as is observed in untreated cells. These findings indicate that there is a fundamental difference in the process by which endocytic vesicles are formed at the two surfaces of polarized epithelial cells and that the integrity and/or the polymerization of actin filaments are required at the apical surface. Actin filaments in microvilli may be part of a mechanochemical motor that moves membrane components along the microvillar surface towards intermicrovillar spaces, or provides the force required for converting a membrane invagination or pit into an endocytic vesicle within the cytoplasm.  相似文献   

7.
Respiratory syncytial (RS) virus infects the epithelium of the respiratory tract. We examined the replication and maturation of RS virus in two polarized epithelial cell lines, Vero C1008 and MDCK. Electron microscopy of RS virus-infected Vero C1008 cells revealed the presence of pleomorphic viral particles budding exclusively from the apical surface, often in clusters. The predominant type of particle was filamentous, 80 to 100 nm in diameter, and 4 to 8 microns in length, and evidence from filtration studies indicated that the filamentous particles were infectious. Cytopathology produced by RS virus infection of polarized Vero C1008 cells was minimal, and syncytia were not observed, consistent with the maintenance of tight junctions and the exclusively apical maturation of the virus. Infectivity assays with MDCK cells confirmed that in this cell line, RS virus was released into the apical medium but not into the basolateral medium. In addition, the majority of the RS virus transmembrane fusion glycoprotein on the cell surface was localized to the apical surface of the Vero C1008 cells. Taken together, these results demonstrate that RS virus matures at the apical surface of polarized epithelial cell lines.  相似文献   

8.
Coyne CB  Bergelson JM 《Cell》2006,124(1):119-131
Group B coxsackieviruses (CVBs) must cross the epithelium as they initiate infection, but the mechanism by which this occurs remains uncertain. The coxsackievirus and adenovirus receptor (CAR) is a component of the tight junction and is inaccessible to virus approaching from the apical surface. Many CVBs also interact with the GPI-anchored protein decay-accelerating factor (DAF). Here, we report that virus attachment to DAF on the apical cell surface activates Abl kinase, triggering Rac-dependent actin rearrangements that permit virus movement to the tight junction. Within the junction, interaction with CAR promotes conformational changes in the virus capsid that are essential for virus entry and release of viral RNA. Interaction with DAF also activates Fyn kinase, an event that is required for the phosphorylation of caveolin and transport of virus into the cell within caveolar vesicles. CVBs thus exploit DAF-mediated signaling pathways to surmount the epithelial barrier.  相似文献   

9.
Viral entry may preferentially occur at the apical or the basolateral surfaces of polarized cells, and differences may impact pathogenesis, preventative strategies, and successful implementation of viral vectors for gene therapy. The objective of these studies was to examine the polarity of herpes simplex virus (HSV) entry using several different human epithelial cell lines. Human uterine (ECC-1), colonic (CaCo-2), and retinal pigment (ARPE-19) epithelial cells were grown on collagen-coated inserts, and the polarity was monitored by measuring the transepithelial cell resistance. Controls were CaSki cells, a human cervical cell line that does not polarize in vitro. The polarized cells, but not CaSki cells, were 16- to 50-fold more susceptible to HSV infection at the apical surface than at the basolateral surface. Disruption of the tight junctions by treatment with EGTA overcame the restriction on basolateral infection but had no impact on apical infection. No differences in binding at the two surfaces were observed. Confocal microscopy demonstrated that nectin-1, the major coreceptor for HSV entry, sorted preferentially to the apical surface, overlapping with adherens and tight junction proteins. Transfection with small interfering RNA specific for nectin-1 resulted in a significant reduction in susceptibility to HSV at the apical surface but had little impact on basolateral infection. Infection from the apical but not the basolateral surface triggered focal adhesion kinase phosphorylation and led to nuclear transport of viral capsids and viral gene expression. These studies indicate that access to nectin-1 contributes to preferential apical infection of these human epithelial cells by HSV.  相似文献   

10.
M Tashiro  J T Seto  H D Klenk    R Rott 《Journal of virology》1993,67(10):5902-5910
Envelope glycoproteins F and HN of wild-type Sendai virus are transported to the apical plasma membrane domain of polarized epithelial MDCK cells, where budding of progeny virus occurs. On the other hand, a pantropic mutant, F1-R, buds bipolarly at both the apical and basolateral domains, and the viral glycoproteins have also been shown to be transported to both of these domains (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J.T. Seto, J. Virol. 64:4672-4677, 1990). MDCK cells were infected with wild-type virus and treated with the microtubule-depolymerizing drugs colchicine and nocodazole. Budding of the virus and surface expression of the glycoproteins were found to occur in a nonpolarized fashion similar to that found in cells infected with F1-R. In uninfected cells, the drugs were shown to interfere with apical transport of a secretory cellular glycoprotein, gp80, and basolateral uptake of [35S]methionine as well as to disrupt microtubule structure, indicating that cellular polarity of MDCK cells depends on the presence of intact microtubules. Infection by the F1-R mutant partially affected the transport of gp80, uptake of [35S]methionine, and the microtubule network, whereas wild-type virus had a marginal effect. These results suggest that apical transport of the glycoproteins of wild-type Sendai virus in MDCK cells depends on intact microtubules and that bipolar budding by F1-R is possibly due, at least in part, to the disruption of microtubules. Nucleotide sequence analyses of the viral genes suggest that the mutated M protein of F1-R might be involved in the alteration of microtubules.  相似文献   

11.
Many enteroviruses bind to the complement control protein decay-accelerating factor (DAF) to facilitate cell entry. We present here a structure for echovirus (EV) type 12 bound to DAF using cryo-negative stain transmission electron microscopy and three-dimensional image reconstruction to 16-A resolution, which we interpreted using the atomic structures of EV11 and DAF. DAF binds to a hypervariable region of the capsid close to the 2-fold symmetry axes in an interaction that involves mostly the short consensus repeat 3 domain of DAF and the capsid protein VP2. A bulge in the density for the short consensus repeat 3 domain suggests that a loop at residues 174-180 rearranges to prevent steric collision between closely packed molecules at the 2-fold symmetry axes. Detailed analysis of receptor interactions between a variety of echoviruses and DAF using surface plasmon resonance and comparison of this structure (and our previous work; Bhella, D., Goodfellow, I. G., Roversi, P., Pettigrew, D., Chaudhry, Y., Evans, D. J., and Lea, S. M. (2004) J. Biol. Chem. 279, 8325-8332) with reconstructions published for EV7 bound to DAF support major differences in receptor recognition among these viruses. However, comparison of the electron density for the two virus.receptor complexes (rather than comparisons of the pseudo-atomic models derived from fitting the coordinates into these densities) suggests that the dramatic differences in interaction affinities/specificities may arise from relatively subtle structural differences rather than from large-scale repositioning of the receptor with respect to the virus surface.  相似文献   

12.
Enterovirus 70 (EV70) is a recently emerged human pathogen belonging to the family Picornaviridae. The ability of EV70 to infect a wide variety of nonprimate cell lines in vitro is unique among human enteroviruses. The importance of virus receptors as determinants of viral host range and tropism led us to study the host cell receptor for this unusual picornavirus. We produced a monoclonal antibody (MAb), EVR1, which bound to the surface of HeLa cells and protected them against infection by EV70 but not by poliovirus or by coxsackievirus B3. This antibody also inhibited the binding of [35S]EV70 to HeLa cells. MAb EVR1 did not bind to monkey kidney (LLC-MK2) cells, nor did it protect these cells against virus infection. In Western immunoassays and in immunoprecipitations, MAb EVR1 identified a HeLa cell glycoprotein of approximately 75 kDa that is attached to the cell membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Decay-accelerating factor (DAF, CD55) is a 70- to 75-kDa GPI-anchored membrane protein that is involved in the regulation of complement and has also been shown to function as a receptor for several enteroviruses. MAb EVR1 bound to Chinese hamster ovary (CHO) cells constitutively expressing human DAF. Anti-DAF MAbs inhibited EV70 binding to HeLa cells and protected them against EV70 infection. Transient expression of human DAF in murine NIH 3T3 cells resulted in binding of labelled EV70 and stably, transformed NIH 3T3 cells expressing DAF were able to support virus replication. These data indicate that the HeLa cell receptor for EV70 is DAF.  相似文献   

13.
Primary cell cultures of African Green monkey kidney (AGMK) contain polarized epithelial cells in which influenza virus matures predominantly at the apical surfaces above tight junctions. Influenza virus glycoproteins were found to be localized at the same membrane domain from which the virus budded. When polarized primary AGMK cells were infected with recombinant SV40 viruses containing DNA coding for either an influenza virus H1 or H2 subtype hemagglutinin (HA), the HA proteins were preferentially expressed at the apical surface in a manner identical to that observed in influenza virus-infected cells. Thus, cellular mechanisms for sorting membrane glycoproteins recognize some structural feature of the HA glycoprotein itself, and other viral proteins are not necessary for this process.  相似文献   

14.
A protease activation mutant of Sendai virus, F1-R, causes a systemic infection in mice, whereas wild-type virus is exclusively pneumotropic (M. Tashiro, E. Pritzer, M. A. Khoshnan, M. Yamakawa, K. Kuroda, H.-D. Klenk, R. Rott, and J. T. Seto, Virology 165:577-583, 1988). Budding of F1-R has been observed bidirectionally at the apical and basolateral surfaces of the bronchial epithelium of mice and of MDCK cells, whereas wild-type virus buds apically (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J. T. Seto, J. Virol. 64:3627-3634, 1990). In this study, wild-type virus was shown to be produced primarily from the apical site of polarized MDCK cells grown on permeable membrane filters. Surface immunofluorescence and immunoprecipitation analyses revealed that transmembrane glycoproteins HN and F were expressed predominantly at the apical domain of the plasma membrane. On the other hand, infectious progeny of F1-R was released from the apical and basolateral surfaces, and HN and F were expressed at both regions of the cells. Since F1-R has amino acid substitutions in F and M proteins but none in HN, the altered budding of the virus and transport of the envelope glycoproteins might be attributed to interactions by F and M proteins. These findings suggest that in addition to proteolytic activation of the F glycoprotein, the differential site of budding, at the primary target of infection, is a determinant for organ tropism of Sendai virus in mice.  相似文献   

15.
Morphological and functional polarity of an epithelial thyroid cell line   总被引:6,自引:0,他引:6  
The thyroid epithelial cell line FRT in monolayer culture appeared to be strongly polarized by morphological criteria. Cells were connected by tight junctions, exposed microvilli toward the culture medium and formed domes at confluency. FRT cells were infected with vesicular stomatitis virus (VSV) and Sindbis virus and the budding polarity was examined 8 and 16 h after infection, respectively. VSV budding occurred preferentially from the basolateral domain of plasma membrane, while Sindbis virus budding was mostly apical. The distribution of VSV and Sindbis virus glycoproteins, as determined by the immuno-gold technique, correlated well with the budding polarity. Polarized budding was not observed in isolated cells in suspension.  相似文献   

16.
Junctional complexes such as tight junctions (TJ) and adherens junctions are required for maintaining cell surface asymmetry and polarized transport in epithelial cells. We have shown that Rab13 is recruited to junctional complexes from a cytosolic pool after cell-cell contact formation. In this study, we investigate the role of Rab13 in modulating TJ structure and functions in epithelial MDCK cells. We generate stable MDCK cell lines expressing inactive (T22N mutant) and constitutively active (Q67L mutant) Rab13 as GFP-Rab13 chimeras. Expression of GFP-Rab13Q67L delayed the formation of electrically tight epithelial monolayers as monitored by transepithelial electrical resistance (TER) and induced the leakage of small nonionic tracers from the apical domain. It also disrupted the TJ fence diffusion barrier. Freeze-fracture EM analysis revealed that tight junctional structures did not form a continuous belt but rather a discontinuous series of stranded clusters. Immunofluorescence studies showed that the expression of Rab13Q67L delayed the localization of the TJ transmembrane protein, claudin1, at the cell surface. In contrast, the inactive Rab13T22N mutant did not disrupt TJ functions, TJ strand architecture nor claudin1 localization. Our data revealed that Rab13 plays an important role in regulating both the structure and function of tight junctions.  相似文献   

17.
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.  相似文献   

18.
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting.  相似文献   

19.
R M Powell  T Ward  D J Evans    J W Almond 《Journal of virology》1997,71(12):9306-9312
Soluble forms of decay-accelerating factor (DAF) (CD55), the receptor for echovirus 7, were synthesized in the yeast Pichia pastoris. Purified recombinant protein containing SCR domains 2, 3, and 4, but lacking the serine/threonine rich region, was shown to block infection of susceptible cells by echovirus 7. In contrast to the situation with poliovirus and its receptor, the neutralization of echovirus 7 by soluble DAF was completely reversible and did not lead to the formation of 135S A-particles. Binding of virus to susceptible cells, by contrast, did lead to the formation of A particles, mainly from virus that had been internalized. The data suggest that a secondary factor(s) may contribute to A-particle formation and uncoating of echovirus 7.  相似文献   

20.
Alexander DA  Dimock K 《Journal of virology》2002,76(22):11265-11272
The interaction of viruses with host cell receptors is the initial step in viral infection and is an important determinant of virus host range, tissue tropism, and pathogenesis. The complement regulatory protein decay-accelerating factor (DAF/CD55) is an attachment receptor for enterovirus 70 (EV70), a member of the Picornaviridae, commonly associated with an eye infection in humans known as acute hemorrhagic conjunctivitis. In early work, the EV70 receptor on erythrocytes, responsible for its hemagglutinating activity, was shown to be sensitive to neuraminidase, implying an essential role for sialic acid in virus attachment. Here, we extend these results to show that cell surface sialic acid is required for EV70 binding to nucleated cells susceptible to virus infection and that sialic acid binding is important in productive infection. Through the use of site-directed mutagenesis to eliminate the single N-linked glycosylation site of DAF and of a chimeric receptor protein in which the O-glycosylated domain of DAF was replaced by a region of the HLA-B44 molecule, a role in EV70 binding for the sialic acid residues of DAF was excluded, suggesting the existence of at least one additional, sialylated EV70-binding factor at the cell surface. Treatment of cells with metabolic inhibitors of glycosylation excluded a role for the N-linked oligosaccharides of glycoproteins but suggested that O-linked glycosylation is important for EV70 binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号