首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of F-actin cables in dividing endosperm cells of a higher plant, Haemanthus, was visualized with the immunogold-silver-enhanced method and compared with the arrangement of immunogold-stained microtubules in the same cells. The three-dimensional distribution of F-actin cables and microtubules during mitosis and cell plate formation was analyzed using ultrathin optical sectioning of whole mounts in polarized light video microscopy. F-actin cables form a loose irregular network in the interphase cytoplasm. Much of this network remains outside of the spindle during mitosis. A few F-actin cables were detected within the spindle. Their pronounced rearrangement during mitosis appears to be related to the presence and growth of microtubule arrays. During prometaphase, actin cables located on the spindle surface and those present within the spindle tend to arrange parallel to the long axis of the spindle. Cables outside the spindle do not reorient, except those at the polar region, where they appear to be compressed by the elongating spindle. Beginning with mid-anaphase, shorter actin cables oriented in various directions accumulate at the equator. Some of them are incorporated into the phragmoplast and cell plate and are gradually fragmented as the cell plate is formed and ages. Actin cables adjacent to microtubule arrays often show a regular punctate staining pattern. Such a pattern is seldom observed in the peripheral cytoplasm, which contains few microtubules. The rearrangement of F-actin cables mimicks the behavior of spindle inclusions, such as starch grains, mitochondria, etc., implying that F-actin is redistributed passively by microtubule growth or microtubule-related transport. Thus F-actin or actomyosin-based motility does not appear to be directly involved in mitosis and cytokinesis in higher plants.  相似文献   

2.
Actin cytoskeleton and microtubules were studied in a human fungal pathogen, the basidiomycetous yeast Cryptococcus neoformans (haploid phase of Filobasidiella neoformans), during its asexual reproduction by budding using fluorescence and electron microscopy. Staining with rhodamine-conjugated phalloidin revealed an F-actin cytoskeleton consisting of cortical patches, cables and cytokinetic ring. F-actin patches accumulated at the regions of cell wall growth, i. e. in sterigma, bud and septum. In mother cells evenly distributed F-actin patches were joined to F-actin cables, which were directed to the growing sterigma and bud. Some F-actin cables were associated with the cell nucleus. The F-actin cytokinetic ring was located in the bud neck, where the septum originated. Antitubulin TAT1 antibody revealed a microtubular cytoskeleton consisting of cytoplasmic and spindle microtubules. In interphase cells cytoplasmic microtubules pointed to the growing sterigma and bud. As the nucleus was translocated to the bud for mitosis, the cytoplasmic microtubules disassembled and were replaced by a short intranuclear spindle. Astral microtubules then emanated from the spindle poles. Elongation of the mitotic spindle from bud to mother cell preceded nuclear division, followed by cytokinesis (septum formation in the bud neck). Electron microscopy of ultrathin sections of chemically fixed and freeze-substituted cells revealed filamentous bundles directed to the cell cortex. The bundles corresponded in width to the actin microfilament cables. At the bud neck numerous ribosomes accumulated before septum synthesis. We conclude: (i) the topology of F-actin patches, cables and rings in C. neoformans resembles ascomycetous budding yeast Saccharomyces, while the arrangement of interphase and mitotic microtubules resembles ascomycetous fission yeast Schizosaccharomyces. The organization of the cytoskeleton of the mitotic nucleus, however, is characteristic of basidiomycetous yeasts. (ii) A specific feature of C. neoformans was the formation of a cylindrical sterigma, characterized by invasion of F-actin cables and microtubules, followed by accumulation of F-actin patches around its terminal region resulting in development of an isodiametrical bud.  相似文献   

3.
In the budding yeast Saccharomyces cerevisiae, the mitotic spindle must align along the mother-bud axis to accurately partition the sister chromatids into daughter cells. Previous studies showed that spindle orientation required both astral microtubules and the actin cytoskeleton. We now report that maintenance of correct spindle orientation does not depend on F-actin during G2/M phase of the cell cycle. Depolymerization of F-actin using Latrunculin-A did not perturb spindle orientation after this stage. Even an early step in spindle orientation, the migration of the spindle pole body (SPB), became actin-independent if it was delayed until late in the cell cycle. Early in the cell cycle, both SPB migration and spindle orientation were very sensitive to perturbation of F-actin. Selective disruption of actin cables using a conditional tropomyosin double-mutant also led to defects in spindle orientation, even though cortical actin patches were still polarized. This suggests that actin cables are important for either guiding astral microtubules into the bud or anchoring them in the bud. In addition, F-actin was required early in the cell cycle for the development of the actin-independent spindle orientation capability later in the cell cycle. Finally, neither SPB migration nor the switch from actin-dependent to actin-independent spindle behavior required B-type cyclins.  相似文献   

4.
We characterized the novel Schizosaccharomyces pombe genes myo4(+) and myo5(+), both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.  相似文献   

5.
In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly.  相似文献   

6.
Mitotic spindles are microtubule-based structures responsible for chromosome partitioning during cell division. Although the roles of microtubules and microtubule-based motors in mitotic spindles are well established, whether or not actin filaments (F-actin) and F-actin-based motors (myosins) are required components of mitotic spindles has long been controversial. Based on the demonstration that myosin-10 (Myo10) is important for assembly of meiotic spindles, we assessed the role of this unconventional myosin, as well as F-actin, in mitotic spindles. We find that Myo10 localizes to mitotic spindle poles and is essential for proper spindle anchoring, normal spindle length, spindle pole integrity, and progression through metaphase. Furthermore, we show that F-actin localizes to mitotic spindles in dynamic cables that surround the spindle and extend between the spindle and the cortex. Remarkably, although proper anchoring depends on both F-actin and Myo10, the requirement for Myo10 in spindle pole integrity is F-actin independent, whereas F-actin and Myo10 actually play antagonistic roles in maintenance of spindle length.  相似文献   

7.
In spontaneously metastasizing rat RPS sarcoma cells, a 3D structure of oblique F-actin cables was observed which was associated with active cell migration in vitro. This led us to further comparative investigations of several other neoplastic and normal cell populations in vitro for F-actin structures using confocal laser scanning microscopy (CLSM). Various forms of F-actin cytoskeleton were observed and the incidence of podosome-related contact structures appeared to be associated with malignancy, interpreted as metastatic capacity.  相似文献   

8.
Factors that are involved in actin polymerization, such as the Arp2/3 complex, have been found to be packaged into discrete, motile, actin-rich foci. Here we investigate the mechanism of actin-patch motility in S. pombe using a fusion of green fluorescent protein (GFP) to a coronin homologue, Crn1p. Actin patches are associated with cables and move with rates of 0.32 microm s(-1) primarily in an undirected manner at cell tips and also in a directed manner along actin cables, often away from cell tips. Patches move more slowly or stop when actin polymerization is attenuated by Latrunculin A or in arp3 and cdc3 (profilin) mutants. In a cdc8 (tropomyosin) mutant, actin cables are absent, and patches move with similar speed but in a non-directed manner. Patches are sites of Arp3-dependent F-actin polymerization in vitro. Rapid F-actin turnover rates in vivo indicate that patches and cables are maintained continuously by actin polymerization. Our studies give rise to a model in which actin patches are centres for actin polymerization that drive their own movement on actin cables using Arp2/3-based actin polymerization.  相似文献   

9.
Summary Using a stroboscopic centrifuge microscope, we demonstrated that, when actin cables (=bundles of F-actin) had been previously removed locally from the cell cortex ofNitella internodes, the passively flowing endoplasm found there under centrifugal force did not stop at all upon electrical stimulus, while the actively flowing endoplasm contiguous to the actin cables at the normal cell cortex promptly stopped following the stimulus and was immobilized for several seconds. The results present evidence that, upon electrical stimulus, the presence of actin cables is required to immobilize the endoplasm flowing contiguous to the actin cables in a state that resists displacement by centrifugal force.Abbreviations APW artificial pond water - CMS centrifuge microscope  相似文献   

10.
Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.  相似文献   

11.
《Plant science》1986,43(1):77-81
The distribution of F-actin was studied in various cell types in root tips of Equisetum hyemale using rhodamine labelled phalloidin as a probe. In dividing cells no cables could be observed, although a strong diffuse staining, which has the same distribution as the microtubules, occurs in the phragmoplast. During cell development the cables become longer and form meshworks but no relationship with cell expansion and microtubule patterns was observed. The distribution apparently follows the pattern of plasma streaming. In expanded cells in particular the nucleus is surrounded by a web of filaments connected with the larger cables in the cell.  相似文献   

12.
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.  相似文献   

13.
How actin filaments (F-actin) and myosin II (myosin) assemble to form the contractile ring was investigated with fission yeast and Xenopus egg. In fission yeast cells, an aster-like structure composed of F-actin cables is formed at the medial cortex of the cell during prophase to metaphase, and a single F-actin cable(s) extends from this structure, which seems to be a structural basis of the contractile ring. In early mitosis, myosin localizes as dots in the medial cortex independently of F-actin. Then they fuse with each other and are packed into a thin contractile ring. At the growing ends of the cleavage furrow of Xenopus eggs, F-actin at first assembles to form patches. Next they fuse with each other to form short F-actin bundles. The short bundles then form long bundles. Myosin seems to be transported by the cortical movement to the growing end and assembles there as spots earlier than F-actin. Actin polymerization into the patches is likely to occur after accumulation of myosin. The myosin spots and the F-actin patches are simultaneously reorganized to form the contractile ring bundles. The idea that a Ca signal triggers cleavage furrow formation was tested with Xenopus eggs during the first cleavage. We could not detect any Ca signals such as a Ca wave, Ca puffs or even Ca blips at the growing end of the cleavage furrow. Furthermore, cleavages are not affected by Ca-chelators injected into the eggs at concentrations sufficient to suppress the Ca waves. Thus we conclude that formation of the contractile ring is not induced by a Ca signal at the growing end of the cleavage furrow.  相似文献   

14.
Elongation of the body axis is accompanied by the assembly of a polarized cytoarchitecture that provides the basis for directional cell behavior. We find that planar polarity in the Drosophila embryo is established through a sequential enrichment of actin-myosin cables and adherens junction proteins in complementary surface domains. F-actin accumulation at AP interfaces represents the first break in planar symmetry and occurs independently of proper junctional protein distribution at DV interfaces. Polarized cells engage in a novel program of locally coordinated behavior to generate multicellular rosette structures that form and resolve in a directional fashion. Actin-myosin structures align across multiple cells during rosette formation, and adherens junction proteins assemble in a stepwise fashion during rosette resolution. Patterning genes essential for axis elongation selectively affect the frequency and directionality of rosette formation. We propose that the generation of higher-order rosette structures links local cell interactions to global tissue reorganization during morphogenesis.  相似文献   

15.
BACKGROUND: Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. RESULTS: We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. CONCLUSIONS: Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.  相似文献   

16.
Actin-based contractility orchestrates changes in cell shape underlying cellular functions ranging from division to migration and wound healing. Actin also functions in intracellular transport, with the prevailing view that filamentous actin (F-actin) cables serve as tracks for motor-driven transport of cargo. We recently discovered an alternate mode of intracellular transport in starfish oocytes involving a contractile F-actin meshwork that mediates chromosome congression. The mechanisms by which this meshwork contracts and translates its contractile activity into directional transport of chromosomes remained open questions. Here, we use live-cell imaging with quantitative analysis of chromosome trajectories and meshwork velocities to show that the 3D F-actin meshwork contracts homogeneously and isotropically throughout the nuclear space. Centrifugation experiments reveal that this homogeneous contraction is translated into asymmetric, directional transport by mechanical anchoring of the meshwork to the cell cortex. Finally, by injecting inert particles of different sizes, we show that this directional transport activity is size-selective and transduced to chromosomal cargo at least in part by steric trapping or "sieving." Taken together, these results reveal mechanistic design principles of a novel and potentially versatile mode of intracellular transport based on sieving by an anchored homogeneously contracting F-actin meshwork.  相似文献   

17.
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.  相似文献   

18.
洋葱鳞茎内表皮细胞经Triton X-100处理和多聚甲醛固定之后用Rh-Ph(Rhodamine-Phalloidin)染色,细胞质内可见较丰富的、直径为100—300nm的F-actin束。较粗的F-actin束沿细胞的长轴平行排列,并纵裂成较细的“分枝”,纵裂成的分枝又纵裂成更细的“分枝”。各种大小的F-actin束相互交织在一起构成一个三维的纤丝网络,并且与细胞膜、细胞核和其它细胞器相连。经同样方法处理和固定的细胞用考马斯亮兰R_(250)(Coomassie brilliant blue R_(250))染色之后,细胞质内可见直径为200—300nm的纤丝,形态特征和排列方式和上述在荧光显微镜下看到的F-actin束相同。本研究结果表明洋葱鳞茎内表皮的细胞骨架包含较丰富的F-actin系统;Pena的考马斯亮兰染色法(1980)所显示的结构主要代表F-actin束。  相似文献   

19.
Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport.  相似文献   

20.
The actin cytoskeleton is critical for tip growth in plants. Profilin is the main monomer actin binding protein in plant cells. The moss Physcomitrella patens has three profilin genes, which are monophyletic, suggesting a single ancestor for plant profilins. Here, we used RNA interference (RNAi) to determine the loss-of-function phenotype of profilin. Reduction of profilin leads to a complete loss of tip growth and a partial inhibition of cell division, resulting in plants with small rounded cells and fewer cells. We silenced all profilins by targeting their 3' untranslated region sequences, enabling complementation analyses by expression of profilin coding sequences. We show that any moss or a lily (Lilium longiflorum) profilin support tip growth. Profilin with a mutation in its actin binding site is unable to rescue profilin RNAi, while a mutation in the poly-l-proline binding site weakly rescues. We show that moss tip growing cells contain a prominent subapical cortical F-actin structure composed of parallel actin cables. Cells lacking profilin lose this structure; instead, their F-actin is disorganized and forms polarized cortical patches. Plants expressing the actin and poly-l-proline binding mutants exhibited similar F-actin disorganization. These results demonstrate that profilin and its binding to actin are essential for tip growth. Additionally, profilin is not needed for formation of F-actin, but profilin and its interactions with actin and poly-l-proline ligands are required to properly organize F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号