首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The distribution of gangliosides was studied in the weaver ( wv/wv ) mutant mouse, where the vast majority of postmitotic granule cell neurons die prior to their differentiation. The wv mutation also shows a dosage effect, as granule cell migration is slowed or retarded in the + /wv heterozygotes. By correlating changes in ganglioside composition with the well-documented histological events that occur during cerebellar development in the normal (+/+), heterozygous ( +/wv ), and weaver ( wv/ wv ) mutant mice, information was obtained on the cellular localization and function of gangliosides. Ganglioside GM1 may be enriched in granule cell growth cones and play an important role in neurite outgrowth. A striking accumulation of GM1, which may result from altered metabolism, occurred in the adult wvlwv mice. GD3 was heavily concentrated in undifferentiated granule cells, but was rapidly displaced by the more complex gangliosides during differentiation. GD1a became enriched in granule cells during formation of synaptic and dendritic membranes, whereas GT1a appeared enriched in Purkinje cell synaptic spines. A possible fucose-containing ganglioside was quantitated only in the wvlwv mice. Ganglioside GT1b became enriched in granule cells during synaptogenesis, whereas GQ1b became enriched in these cells after synaptogenesis. The concentrations of GT1b and especially GQ1b increased continuously with age. Our results provide further evidence for a differential cellular enrichment of gangliosides in the mouse cerebellum and also suggest that certain gangliosides may be differentially distributed within the membranes of these cells at various stages of development.  相似文献   

2.
Quantitative measurements of neuron behavior from time-lapse microcinematography of dissociated cultures of normal (+/+), heterozygous weaver (+/wv), and homozygous weaver (wv/wv) 7-day-old mouse cerebellum were performed to identify dose-dependent expressions of the mutant allele. Impaired neurite growth by granule cell neurons is a direct result of a dose-dependent increased frequency of neurite retraction and decreased rate of growth cone advancement. The number of retractions per neurite is 0.2, 1.0, and 2.0 for +/+, +/wv, and wv/wv neurites, respectively. Maximal rates of growth cone advancement are 1041, 443, and 250 micron/day for +/+, +/wv, and wv/wv granule cell neurites, respectively. Neurite initiation is actually increased in wv/wv cultures, though the neurites are not well sustained. The frequency of neurite initiation is 1.0, 1.7, and 2.2 for +/+, +/wv, and wv/wv neurons, respectively. Measurements of oscillations of somal position revealed that the cell center moves increasing distances over short times in proportion to the number of mutant genes. Nuclear translocation, the mode of somal migration in vivo and in vitro, occurs at the same frequency and rate in normal and mutant cultures. Weaver gene expression induces a cytopathology affecting various morphogenetic events rather than producing a block at a specific stage in granule cell differentiation. It is hypothesized that the dose-dependent impairments of cell motility reflect weaver gene action at the cell surface or cytoskeleton.  相似文献   

3.
A mutant gene dose-dependent inhibition of cerebellar granule cell neuron survival and neurite growth in dissociated cultures of cerebellum from 7-day-old heterozygous (+/wv) and homozygous (wv/wv) weaver mutant mice (M. Willinger, D. M. Margolis, and R. L. Sidman. (1981), J. Supramol. Struc. 17, 79-86) has previously been observed. In the present phase-contrast study time-lapse microcinematography was performed between 10 and 80 hr in culture to determine which properties of neurite growth and neuron migration are affected by weaver gene expression. Neurite growth in +/+ cultures is rapid and discontinuous. Neurites are thin and cylindrical. Membrane movement occurs only at the growth cone. Growth cone contact with cell aggregates or glial somas results in the cessation of cone advancement and the induction of translocation of the neuronal soma toward the astrocyte. In cultures of +/wv and wv/wv cerebellar cells, abnormal neurite growth is characterized by frequent neurite retractions and reinitiations. Neuronal somas and neurite shafts are motile during elongation. Homozygous neurites and cones are pleomorphic. Normal, +/wv, and wv/wv neurons undergo nuclear translocation. Like +/+ neurons, +/wv neurons migrate in response to growth cone-cell soma contact. In contrast, homozygous soma frequently reverse direction and migrate independently of cell contact. Granule cell death occurs with increasing frequency with increasing gene dosage. Neurons are unusually active prior to the rapid onset of cell death. In summary, the weaver mutation impairs granule cell differentiation by affecting neurite maintenance, membrane motility, and neuron morphology. The loss of viability appears to be independent of, or secondary to, these targets of gene action.  相似文献   

4.
Abstract: The cellular distribution of gangliosides in the cerebellum was studied in a series of adult mouse mutants that lose specific populations of neurons. The weaver ( wv ) mutation destroys the vast majority of granule cells, whereas the Purkinje cell degeneration mutation ( pcd ) destroys the vast majority of Purkinje cells. The staggerer ( sg ) and lurcher ( Lc ) mutations, on the other hand, destroy the vast majority of both granule and Purkinje cells. A proliferation of reactive glial cells, which occurs as a consequence of neuronal loss, has been reported in the sg/sg and pcd/pcd mutants, but not in the wv/wv mutant. Compared with the normal (+/+) mice, the concentration (μg/100 mg dry weight) of GD1a was significantly reduced in those mutants that lost granule cells, but was not reduced in the pcd/pcd mutant. The concentration of GTIa, on the other hand, was significantly reduced in those mutants that lost Purkinje cells, but was not reduced in the wv/wv mutant. A significant elevation in the concentration of GD3, which may be related to the proliferation of reactive glial cells, was observed in the pcd/pcd, sglsg , and Lc /+ mutants, but was not observed in the wv/wv mutant. Because these ganglioside abnormalities were confined to the cerebellum, they cannot result from genetic defects in ganglioside metabolism. Instead, these abnormalities result from a differential enrichment of gangliosides in neural membranes. Our findings suggest that GDT1a is more heavily concentrated in granule cells than Purkinje cells, whereas the opposite appears true for GTla. It also appears that GD3 is enriched in reactive glial cells and may play an important role during the morphological transformation of neural membranes.  相似文献   

5.
The mouse autosomal recessive mutant gene weaver (wv) results in abnormalities in cerebellum, substantia nigra and testis. Although a subtracted cDNA library prepared by removing P31 (wv/wv) sequences from a P1 (wv/+) library should contain mainly nonrepetitive neonatal sequences, unfortunately, repetitive sequences still appear during screening. Two clones, one repetitive, the other not, are used to illustrate the problems encountered in attempting to isolate the weaver gene from a subtracted cDNA library.Special issue dedicated to Dr. Sidney Ochs.  相似文献   

6.
Abstract: The cerebellar levels of Protein I, a synapse-specific neuronal phosphoprotein, have been investigated in the cerebellar mouse mutants staggerer ( sg ), weaver ( wv ), nervous ( nr ), and Purkinje cell degeneration ( pcd ). The Protein I concentration was reduced by about 66% in sg and wv mutants, representing a 90% loss of Protein I per cerebellum. A heterozygote effect was observed in the wv mutant. These results indicate that a great majority of Protein I in the normal cerebellum may be present in the granule cells. in nr mutants the cerebellar Protein I concentration was reduced by only 12% in 62-day-old mice, suggesting that Purkinje cells contribute little to cerebellar Protein I. However, a greater reduction was observed in pcd mutants, which may reflect on the nature of the pcd mutation.  相似文献   

7.
The weaver mutation impairs migration of the cerebellar granular neurons and induces neuronal death during the first two weeks of postnatal life. To elucidate the molecular mechanisms for the impaired neuronal migration, we investigated the rescue mechanisms of the weaver (wv/wv) granule neurons in vitro. We found that Fab2 fragments of antibodies against a neurite outgrowth domain of the B2 chain of laminin enhanced neurite outgrowth and neuronal migration of the weaver granule neurons on a laminin substratum and in the established cable culture system. The rescue of the weaver granule neurons by antibodies against the B2 chain of laminin may result from the neutralizing effect of these antibodies against the elevated B2 chain levels of the weaver brain. The L-type calcium channel blocker, verapamil (1-5 microM), also rescued the weaver granule neurons. High concentrations of MK-801 (10- 20 microM), a glutamate receptor antagonist and voltage-gated calcium channel blocker, rescued the weaver granule neurons similar to verapamil, but low concentrations of MK-801 (1 microM) had no rescue effect. Simultaneous patch-clamp studies indicated that the weaver granule neurons did not express functional N-methyl-D-aspartate receptors further indicating that the rescue of the weaver granule neurons by MK-801 resulted from its known inhibition of voltage-gated calcium channels. The present results indicate that antibodies against the B2 chain of laminin, verapamil, and high concentrations of MK-801 protect the weaver granule neurons from the otherwise destructive action of the weaver gene. Thus, both the laminin system and calcium channel function contribute to the migration deficiency of the weaver granule neurons.  相似文献   

8.
Serotonin (5-HT) uptake sites, or transporters, were measured in the neostriatum (caudate putamen) of wild type (+/+) mice and heterozygous (wv/+) and homozygous (wv/wv) weaver, as well as in heterozygous Lurcher (Lc/+) mutants. These topological surveys were carried out by quantitative ligand binding autoradiography using the uptake site antagonist [3H]-citalopram as a probe of innervation densities in four quadrants of the rostral neostriatum and in two halves of the caudal neostriatum. In addition, tissue concentrations of 5-HT, 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol were measured by high-performance liquid chromatography with electrochemical detection in these neostriatal divisions. In +/+ mice and in Lc/+ mutants there was a dorso-ventral gradient of increasing 5-HT levels, and they exhibited a similar heterogeneity of [3H]-citalopram labeling. In contrast, the gradients of 5-HT concentrations and [3H]-citalopram binding disappeared in the weaver mutants, suggesting a rearrangement of the 5-HT innervation. This reorganization of the 5-HT system in the neostriatum was more obvious in the wv/wv and is compatible with the hypothesis that the postnatal dopaminergic deficiencies that characterize weaver mutants lead to a sprouting of fibers and thus constitute a genetic model of dopaminergic denervation that leads to a 5-HT hyperinnervation.  相似文献   

9.
In the present study we report for the first time a weaver (wv) gene dose effect on neuron survival and neurite formation in vitro. Dissociated cerebellar cells from postnatal 7- and 8-day-old normal ( + / + ), heterozygous weaver ( + /wv) and homozygous weaver (wv/wv) mice were cultured as monolayers on poly-L-lysine coated glass. Cell death occurred rapidly in wv/wv cultures. Cell counts showed that less than 20% of the total neurons and neuronal precursors (identified by “birthday” radiolabeling techniques) survived by Day 3. Cell death was less extensive in + /wv cultures with 65% of the total neurons and 80% of the precursors surviving by Day 3. In contrast to wv/wv cultures, younger neurons survive better than the total population in + /wv cultures. The impairment of neurite formation over the first week is also proportional to the number of mutant genes as shown by quantitation of (a) the percentage of cells with neurites; (b) the percentage of cells with neurites of a given length class with time; (c) the lengths of the longest processes formed per cell. The mean longest neurite lengths obtained by computer digitization at 6 days in vitro were 41.8, 26.8, and 9.0 μm for + / +, + /wv, and wv/wv granule cells, respectively.  相似文献   

10.
Utilizing the backcross C57BL/6 wv/wv x (C57BL/6 wv/wv x MOLD/Rk), the mouse neurological mutation weaver (wv) was mapped less than 1 cM proximal to Ets-2 and Mx on mouse chromosome 16 (0.96 +/- 0.1% recombination). This region is known to include eight genes that are found on human chromosome 21 (HSA 21) and appears to be highly conserved between the two species. We therefore predict that the normal human homolog of wv will be located on HSA 21 and would be in dosage imbalance in individuals with Down syndrome.  相似文献   

11.
12.
Abstract: The 2-deoxyglucose autoradiographic method has been used to study activity in cerebellum of the weaver and nervous mutant mice. Patterns of 2-deoxyglucose incorporation into the cerebral hemispheres from weaver and nervous strains did not differ significantly from those of the controls. In the normal cerebellum, 2-deoxyglucose incorporation was maximal in the granular layer, where mossy fibers form synapses with the dendrites of granule cells. In the cerebellum of nervous mice, which lacks Purkinje cells, the incorporation of the 2-deoxyglucose was maximal in the granular layer, but the incorporation into the molecular layer appeared less than in the control. The incorporation into the cerebellum from weaver, which lacks granule cells, was much higher than that of the control, the maximal incorporation being found in the Purkinje cell layer and in cell masses located in the white matter. These data suggest that the heterologous synapses that mossy fibers or climbing fibers form with the cells in the Purkinje cell layer and the cells in the white matter in the weaver cerebellum are functional.  相似文献   

13.
Adenosine A1 Receptors Are Associated with Cerebellar Granule Cells   总被引:3,自引:0,他引:3  
The cerebellum of mouse appears to have only the adenosine A1 receptor, which decreases adenylate cyclase activity, and not the A2 receptor, which increases adenylate cyclase activity. The adenosine analog N6-(L-phenylisopropyl)adenosine (PIA), stimulates the A1 receptor in a membrane preparation and decreases basal adenylate cyclase activity by 40%. The EC50 for PIA is approximately 50 nM. To associate the A1 receptor with a cerebellar cell type, three different neurological mutant mouse strains were studied: staggerer (Purkinje and granule cell defect), nervous (Purkinje cell defect), and weaver (granule cell defect). PIA was unable to effect a maximal decrease in adenylate cyclase activity of membranes prepared from cerebella of the staggerer and weaver mice in comparison with the respective littermate control mice. In contrast, membranes from nervous mice and their littermates showed similar PIA dose-response curves. Moreover, the diminished PIA response observed in the weaver cerebellum, when compared with the control littermate, was not detected in the striatum. This suggests no overall brain defect in the adenosine A1 receptors coupled to adenylate cyclase of the weaver mouse. We conclude that a loss of granule cells coincides with an attenuated response to PIA, implying that the A1 receptors are associated with the granule cells of the cerebellum.  相似文献   

14.
In addition to an altered dopaminergic input, the striatum of the weaver mutant mouse (wv/wv) has increased serotonin tissue content and uptake compared to the wild-type mouse (+/+). To gain information regarding the functional status of serotonergic inputs to thewv/wv striatum, endogenous serotonin release fromwv/wv and +/+ striatum was measured under basal conditions as well as in the presence of fenfluramine or elevated concentrations of potassium (K+). Fractional basal release of serotonin from the +/+ striatum was significantly greater than that from thewv/wv striatum. In the presence of K+, evoked release (stimulated release minus basal release) was greater from the +/+ striatum than from thewv/wv striatum. In the presence of fenfluramine, evoked serotonin release was greater from thewv/wv striatum compared to the +/+ striatum. These data are consistent with the involvement of an additional transmitter(s) in modulating serotonin release to a greater extent in thewv/wv than the +/+ striatum. The data on fenfluramine-stimulated serotonin release suggest that the additional serotonin content found in thewv/wv striatum is in a releasable pool but that striatal serotonin release might be attenuated more inwv/wv than in +/+ mice.  相似文献   

15.
The content of glutamate, GABA, aspartate, glycine and alanine was determined in the cerebellum, brain stem and cerebrum of three different mutant mice which have been named ‘staggerer’, ‘weaver’ and ‘nervous’ on the basis of neurological symptoms. In the ‘staggerer’ and ‘weaver’ mutants there is an almost complete absence of granule cells in the cerebellar cortex while in the ‘nervous’ mutant there is a loss of Purkinje cells (and to a lesser extent a loss of granule cells) in the cerebellar cortex. In the cerebellum of the ‘weaver’ mutant, the content of glutamate was signficantly lower (P < 0.025) than control values (8.77 ± 0.76 vs 12.0 ± 1.3 μmol/g tissue wet wt) and the contents of GABA and glycine were significantly greater than normal levels. In the cerebellum of the ‘staggerer’ mutant, the content of glutamate was significantly lower (6.62 ± 0.70 μmol/g) and the contents of glycine and alanine significantly higher than control values. In the cerebrum and brain stem regions of the staggerer mutant, weaver mutant and the normals the contents of the five amino acids were the same. The contents of glycine and alanine in the cerebellum, GARA and glycine in the brain stem and GABA and alanine in the cerebrum of the nervous mutants were higher than control values. The data are discussed in terms of a possible role for glutamate functioning as an excitatory transmitter when released from the cerebellar granule cells.  相似文献   

16.
Two forms of the c-src protein-tyrosine kinase, pp60c-src, are detectable in the central nervous system. One form pp60+, appears to be exclusively expressed in neurons and is characterized by insertion of 6 amino acids compared to its non-neuronal counterpart, pp60. These 2 proteins were studied in the mutant mouse strains weaver and staggerer with postnatal loss of cerebellar granular neurons. We found a continuous postnatal decline of the neuronal form of pp60c-src, pp60+, in the cerebellum of both mutants concomitant with the degeneration of cerebellar granule cells. This indicates that granular neurons provide the main source for pp60+ in the cerebellar cortex.  相似文献   

17.
By a highly sensitive enzyme immunoassay we measured the level of nerve growth factor (NGF) in the cerebellum and cerebrum of the neurologically mutant mice, weaver, reeler and Purkinje cell degeneration (PCD). A significant decrease in NGF level was observed in both cerebellum and cerebrum of weaver and reeler mutants of either sex. However, there was no such difference between normals and mutants in the case of the PCD mice. These results show that weaver and reeler mice have abnormalities of NGF synthesis and/or degradation not only in the cerebellum but also in the cerebrum.  相似文献   

18.
The homozygous mouse mutant weaver exhibits a massive loss of cerebellar granule neurons postnatally. The death of these cells is associated with a single amino acid mutation in the G protein-activated inwardly rectifying potassium channel, Girk2. Evidence suggests that both the mutated Girk2 channel and the calcium channel-associated N-methyl-d-aspartate receptor play important roles in the apoptotic death of weaver cerebellar granule cells, but the downstream events associated with this process are unknown. In this study, we demonstrate that the consequences of the mutation result in caspase activation. In addition, our results show that caspase inhibition in vivo decreases caspase activation and granule cell apoptosis and significantly improves behavioral deficits associated with the weaver's phenotype.  相似文献   

19.
Pax6 has been implicated in cerebellar granule cell development, however the neonatal lethality of the Sey/Sey mutant has precluded a more detailed study of this late developing neuronal type. In this study we use experimental mouse chimeras made from wildtype and Pax6-null embryos to circumvent early lethality and assess the developmental potential of mutant cells in the construction of the cerebellum. We have identified the granule cell as a direct target of mutant gene action, with glia and Purkinje cells being affected in what is largely a non-cell autonomous manner.Most dramatically, in postnatal day 21 (P21) chimeras, mutant cells are largely absent in the anterior and posterior cerebellum while present in central lobules, but amidst disorganized cerebellar architecture. Analysis of P0/1 and P10 chimeras demonstrates a profound temporally based defect where mutant cells colonize the anterior and posterior EGL but fail to migrate to the IGL. Mutant granule cells in the central lobules can reach the IGL in an abnormal manner, with large streams of cells forming raphes through the molecular layer.These studies provide new insights into the role of Pax6 in postnatal cerebellar development that pinpoint the granule cell as an intrinsic target of the mutant gene and key events in the life of the developing granule cell that depend upon normal Pax6 expression.  相似文献   

20.
A significant reduction in the content of two members of the sulfoglucuronyl-neolacto series of glycolipids (SGGLs), 3-sulfoglucuronyl-lacto-N-neotetraosylceramide (SGGL-1) and 3-sulfoglucuronyl lacto-N-norhexaosylceramide (SGGL-2), in the cerebellum of the Purkinje cell abnormality mutants, Purkinje cell degeneration (pcd/pcd), lurcher (Lc/+), and staggerer (sg/sg), was also confirmed in the mildly affected nervous (nr/nr) mutant. The expression of SGGLs was studied during development of the pcd/pcd mutant cerebellum, and it was shown that the rate of decline in the level of SGGLs practically coincided with the loss of Purkinje cell perikarya. This indicated that SGGLs are primarily localized in Purkinje cells and that initially, at least, there is no genetic defect in the biosynthesis of SGGLs in the mutant. The precursors of SGGLs, viz., lacto-N-neotetraosylceramide (paragloboside) and lacto-N-norhexaosylceramide, as well as other glycolipids derived from these precursors, such as X-determinant fucoglycolipids and disialosyllacto-N-neotetraosylceramide, were also present in normal cerebellum. Levels of paragloboside and its other derivatives, similar to SGGLs, were also significantly reduced in the Purkinje cell abnormality mutants pcd/pcd, sg/sg, Lc/+, and nr/nr but were normal in other cerebellar mutants, such as quaking (qk/qk), weaver (wv/wv), and reeler (rl/rl), where Purkinje cells are not involved. Thus, the entire paragloboside family of glycolipids is primarily associated with Purkinje cells in the cerebellum. Although levels of monoclonal antibody HNK-1-reactive glycolipids were reduced in the Purkinje cell abnormality mutants, HNK-1-reactive glycoproteins were not affected in these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号