首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background, aim, and scope

This paper summarises the critical review process according to ISO 14040/44 performed for the European Aluminium Association (EAA), Brussels. Scope of the review was a life cycle inventory (LCI) project, aiming at providing the life cycle assessment (LCA) community with reliable generic data relevant for the European aluminium market, including the production of aluminium ingot either from primary aluminium or from recycled aluminium and the fabrication of semi-finished products, i.e. sheet, foil or extrusion fabrication from aluminium ingots.

Main features

Critical reviewing according to ISO 14040 and 14044, although described formally in the standards, evolved essentially via ‘learning by doing’. This special review has been conducted as a critical review by one external expert. Since no comparative assertions are to be expected from the results obtained, a critical review according to the panel method (at least three reviewers) was deemed not to be necessary. The review process was interactive and took about a year (March 2007 to April 2008). The full review report is printed in full length at the end of the published LCI data report.

Results

The report continues the tradition of the former reports but offers new aspects. The main change refers to the use of new software for data handling (GaBi 4.0 replacing the formerly used LCA-2 based on BUWAL data), including generic data for ancillary processes and inputs for the energy model. The LCI results, therefore, cannot be compared exactly with the data of the previous reports. There is no disconnection, however, so that trends can be observed and discussed with some precaution. The main trend with respect to energy and emissions is one of slow but steady improvement. A main methodological improvement with regard to the former projects is the new energy model, especially with regard to imported primary aluminium.

Discussion

There was some discussion about the term ‘waste’ when it is put outside the system boundary together with the resulting emissions. According to the author’s opinion, there are at least three types of waste: (1) waste to be reused or recycled—this waste stays within the technosphere and, thus, within the system boundaries of a typical LCA; (2) waste to be collected and removed legally by incineration, controlled landfilling or composting—this waste stays within the technosphere, too; only the emissions of the waste removal processes (CO2, CH4, organic contaminants to ground water, leached metal ions to ground water, etc.) escape into the environment if not collected properly; (3) waste thrown away, e.g. by littering, illegal dumping, burning, etc.; this waste ends up in the environment if not collected. There was a time when solid waste in LCA (if landfilled) was considered as an ‘emission into soil’. This is only true for illegal, uncontrolled land filling. Controlled landfilling is a kind of process and belongs to the technosphere as long as it is controlled. EAA envisages to include appropriate data in future updates (incineration is already included).

Conclusions

According to ISO 14040, “The critical review process shall ensure that: the methods used to carry out the LCA are consistent with the international Standard; the methods used to carry out the LCA are scientifically and technically valid, the data used are appropriate and reasonable in relation to the goal of the study; the interpretations reflect the limitations identified and the goal of the study; the study report is transparent and consistent.” These five points can be confirmed with a few restrictions. With regard to the first item, consistency with ISO 14040/44, there is a formal lack of a section ‘interpretation’. It was also discussed that the study is not a full LCA, but the standard allows for LCI studies. As such, the study conforms to ISO. The methods used in data collection and modelling are described clearly and correspond to the state of the art. They should be published and become standard for generic data collection.

Perspectives

It is assumed and recommended that the process of continuous improvement (both technological and relating to data collection and modelling) will continue in the following years. However, since raw aluminium production is faced with thermodynamic limits, it is proposed to rethink the whole aluminium system, which is based on a century-old technology and to conceive bold new routes, especially aiming at a further increase of renewable energy use and further improving recycling in countries with deficient waste collecting systems. The use of heavy fuel oil in alumina production should be discouraged.
  相似文献   

2.

Purpose  

The paper presents a discussion on the possibilities of using life cycle assessment (LCA) in identification and assessment of environmental aspects in environmental management systems based on the requirements of the international ISO14001 standard and the European Union EMAS regulation. Some modifications of LCA methodology are proposed in part 1, while the results of a review of environmental aspects for 36 organisations with implemented environmental management systems (EMS) are presented in part 2 of the article.  相似文献   

3.

Background, aim, and scope

The development of robust and up-to-date generic life cycle inventory data for materials is absolutely crucial for the LCA community since many LCA studies rely on these generic data about materials. LCA databases and software usually include within their package such generic LCI datasets. However, in many cases, the quality of these data is poor while the methodology and the models used for their development are rarely accessible or transparent. This paper presents the development of robust European LCI datasets for the production of primary and recycled aluminium ingots and for the transformation of aluminium ingot into semi-finished products, i.e. sheet, foil and extrusion.

Materials and methods

The environmental data have been collected through an extensive environmental survey, organised among the European aluminium industry, focusing on the year 2005 and covering EU27 countries as well as EFTA countries (Norway, Iceland and Switzerland). From this survey, European averages, i.e. foreground data, have been calculated for the direct inputs and outputs of the various aluminium processes. Using the GaBi software, the foreground data have been combined within LCI models integrating background LCI data on energy supply systems, ancillary processes and materials. For the primary aluminium production (smelters), a specific model for the electricity production has been developed. The methodology for the data consolidation and for the development of the various models is explained as well as the main differences between the new modelling approach and LCI models used in the past. An independent expert has critically reviewed the entire LCI project including data collection, models development, calculation of LCI data and associated environmental indicators.

Results

As confirmed by the critical review, the new LCI datasets for aluminium ingot production and transformation into semi-finished products have been developed though a robust methodology in full accordance with ISO 14040 and 14044. Most significant environmental data and LCI results are reported in this paper with an emphasis on energy use and the major emissions to air. The full environmental report, including the critical review report and the calculation of environmental indicators for a pre-set of impact categories, is available on the website of the European Aluminium Association (EAA 2008). Whenever possible, the updated European averages and the new LCI data are compared with previous results developed from two past European surveys covering respectively the years 2002 and 1998. For the aluminium processes related to primary production, European averages are also benchmarked against global averages calculated from two worldwide surveys covering the years 2000 and 2005.

Discussion

While some data evolutions are directly attributed to the variation of foreground data, e.g. raw materials consumption or energy use within the aluminium processes, modifications related to the system boundaries, the background data and the modelling hypotheses can also influence significantly the LCI results. For primary aluminium production, the evolution of the foreground data is dominated by the strong decrease of PFC (perfluorocarbon) emissions (about 70% since 1998). In addition, the electricity structure calculated from the refined electricity model shows significant differences compared to previous models. In the 2005 electricity model, the hydropower share reaches 58% while coal contributes to 15% only of the electricity production. In 1998, the respective share of coal-based and hydro-electricity were respectively calculated to 25% and 52%. As a result, the electricity background LCI data are then significantly affected and influence also positively the environmental profile of primary aluminium in Europe. For the semi-production processes, the reduction of process scrap production, especially for extrusion and foil, demonstrates the increase of process efficiency from 1998. In parallel, a significant reduction of energy use is observed between 1998 and 2005. However, this positive trend is not fully reflected within LCI data due to the significant contribution of the background electricity data. The choice of the electricity model plays also a critical role for these transformation processes since electricity production contributes to about 2/3 of the consumption of the non-renewable energy and to about the same level of the air emissions. In such a case, the move from the UCPTE electricity model used in the past towards the EU25 electricity model used for the development of the updated LCI data has a detrimental effect on the environmental profile of the three LCI datasets respectively related to sheet, foil and extrusion. In addition to energy and process scrap reduction, the reduction of the VOC (volatile organic compounds) emission is also a major trend in foil production. Finally, for old aluminium scrap recycling, the new LCI data show a dramatic improvement regarding energy efficiency, reinforcing the environmental soundness of promoting and supporting aluminium recycling within the aluminium product life cycles.

Conclusions

This paper shows the development of generic LCI data about aluminium production and transformation processes which are based on robust data, methodologies and models in full accordance with ISO 14040 and 14044 standards, as confirmed by the critical review. The publishing of these LCI datasets definitely shows the commitment of the European aluminium industry to contribute in a transparent, fair and scientifically sound manner to product sustainability in a life cycle thinking perspective.

Recommendations and perspectives

Software houses and LCA practitioners are invited to update their generic European data on aluminium with the herewith datasets. Even if the quality and the completeness of these LCI data reach a high standard, some areas for data improvements have been identified, as described within the review report. Land use, water use and solid waste treatment appear as three priority areas for data refining and improvement. The land use dimension, particularly meaningful for bauxite mining, is not covered in the current LCI data while it is now integrated within many LCA studies. Up to now, the reporting of meaningful and robust data on water origins and use have not been possible due to the huge discrepancies between the surveyed sites combined with the difficulty to report coherent input and output water mass flows. The development of water data, only focussing on water-stressed areas, will most probably make more sense in the future. Finally, collecting more qualitative information about solid waste processing and treatment will help to include such operations within the system boundaries and to model their associated air, water and soil emissions.
  相似文献   

4.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

5.

Background, aims and scope  

The goal of this work is to provide methodological information for modeling distance and backhaul for commodity transport in a life cycle inventory (LCI). The scope includes a review of modeling parameters accounted for in transport unit process models and accounted for in unit process models using transported materials. Assumptions related to backhaul (or return trip) and transport distance are characterized and evaluated. A case study explores the contribution of transport and the bearing of assumptions on the life cycle of select US-produced metals.  相似文献   

6.

Introduction

The European Commission is supporting the development of the International Reference Life Cycle Data System (ILCD). This consists primarily of the ILCD Handbook and the ILCD Data Network. This paper gives an insight into the scientific positions of business, governments, consultants, academics, and others that were expressed at this public consultation workshop.

Workshop focus

The workshop focused on four of the topics of the main guidance documents of the ILCD Handbook: (1) general guidance on life cycle assessment (LCA); (2) guidance for generic and average life cycle inventory (LCI) data sets; (3) requirements for environmental impact assessment methods, models and indicators for LCA; and (4) review schemes for LCA.

Workshop participation

This consultation workshop was attended by more than 120 participants during the 4 days of the workshop. Representatives came from 23 countries, from both within and outside the European Union.

Workshop structure

Approximately half of the participants were from business associations or individual companies. Another 20% were governmental representatives. Others came predominantly from consultancies and academia.

Results

This public consultation workshop provided valuable inputs into the overall ILCD Handbook developments as well as for further development. This paper focuses on some of the main scientific issues that were raised.  相似文献   

7.

Purpose  

The aim of this study was to investigate the factors that influence the sustainability of disposable baby diapers (nappies) using life cycle assessments (LCAs). Size 4 Pampers? Cruisers (North American name) and ActiveFit (European name) from 2007 are compared to new versions made in 2010 to determine if the design and materials changes intended to improve performance also lead to reductions in the most relevant environmental indicators.  相似文献   

8.

Purpose  

The life cycle assessment of silicon wafer processing for microelectronic chips and solar cells aims to provide current and comprehensive data. In view of the very fast market developments, for solar cell fabrication the influence of technology and capacity variations on the overall environmental impact was also investigated and the data were compared with the widely used ecoinvent data.  相似文献   

9.

Background, aim, and scope  

Life Cycle Assessment (LCA) is an emerging supporting tool designed to help practitioner in systematically assessing the environmental performance of selected product’s life cycle. A product’s life cycle includes the extraction of raw materials, production, and usage, and ends with waste treatment or disposal. Life cycle impact assessment (LCIA) as a part of LCA is a method used to derive the environmental burdens from selected product’s stages. LCIA is structured in classification, characterization, normalization and weighting. Presently most of the LCIA practices use European database to establish the characterization, normalization and weighting value. However, using these values for local LCA practice might not be able to reflect the actual Malaysian’s environmental scenario. The aim of this study is to create a Malaysian version of normalization and weighting value using the pollution database within Malaysia.  相似文献   

10.

Purpose

Light-emitting diode (LED) technology is increasingly being used for general lighting. Thus, it is timely to study the environmental impacts of LED products. No life cycle assessments (LCA) of recessed LED downlight luminaires exist in the literature, and only a few assessments of any type of LED light source (component, lamp and luminaire) are available.

Methods

The LCA of a recessed LED downlight luminaire was conducted by using the data from the luminaire manufacturer, laboratory measurements, industry experts and literature. The assessment was conducted using SimaPro LCA software. EcoInvent and European Reference Life Cycle Database were used as the databases. The LCA included a range of environmental impacts in order to obtain a broad overview. The functional unit of the LCA was one luminaire used for 50,000 h. In addition, the sensitivity of the environmental impacts to the life was studied by assessing the LED downlight luminaire of 36,000 h and 15,000 h useful life and to the used energy sources by calculating the environmental impacts using two average energy mixes: French and European.

Results and discussion

The environmental impacts of the LED luminaire were mostly dominated by the energy consumption of the use. However, manufacturing caused approximately 23 % of the environmental impacts, on average. The environmental impacts of manufacturing were mainly due to the driver, LED array and aluminium parts. The installation, transport and end of life had nearly no effect on the total life cycle impacts, except for the end of life in hazardous waste. The life cycle environmental impacts were found to be sensitive to the life of the luminaire. The change from the French to the European average energy mix in use resulted to an even clearer dominance of the use stage.

Conclusions

The case study showed that the environmental impacts of the LED downlight luminaire were dominated by the use-stage energy consumption, especially in the case of the European energy mix in use. Luminous efficacy is, thus, a relatively appropriate environmental indicator of the luminaire. As LED technology possesses generally higher luminous efficacy compared to conventional ones, the LED luminaire is considered to represent an environmentally friendly lighting technology. However, data gaps exist in the data in LED product manufacturing and its environmental impacts. The environmental impacts of different LED products need to be analysed in order to be able to precisely compare the LED technology to the conventional lighting technologies.  相似文献   

11.

Background, aim and scope  

In the context of environmental life cycle assessment (LCA), life cycle impact assessment (LCIA) is one of the central issues with respect to modelling and methodological data collection. The thesis described in this paper focusses on the assessment of toxicity-related impacts, and on the collection of normalisation data. A view on the complementary roles of LCA toxicity assessment on the one hand and human and environmental risk assessment (HERA) on the other is presented, and the global, spatially differentiated LCA toxicity assessment model GLOBOX for the assessment of organics and metals is described. Normalisation factors for the year 2000 are calculated on a global as well as on a European level.  相似文献   

12.

Purpose

The International Aluminium Institute’s (IAI) aim was to publish life cycle inventory (LCI) data for use by life cycle assessment (LCA) practitioners through professional databases. The need to provide robust data stems from the increasing application of LCA as a tool for making material and design choices and the importance for representative, up-to-date information to underpin such studies. In addition to this, the institute aimed to evaluate the significance of potential environmental impacts, based on the LCI results, against a defined set of impact categories which can be tracked over time.

Methods

Key environmental data collected as part of the IAI’s long-running industry surveys provided the foundation for the life cycle inventory. In order to evaluate the environmental impact, direct input and output data for primary aluminium production were supplemented with background data for indirect processes available in GaBi version 6 (PE International, 2013b). A cradle-to-gate model was constructed with two distinct datasets, global (GLO) and global minus China (rest of world (RoW)). A partial life cycle impact assessment (LCIA) was completed using the models, and the following six CML (2001–Nov 2010) midpoint environmental impact categories were reported: acidification potential, depletion of fossil energy resources, eutrophication potential, global warming potential, ozone depletion potential and photo-oxidant creation potential. Water scarcity footprint of primary aluminium (Buxmann et al. in this issue) was also included.

Results and discussion

The results indicated that the largest greenhouse gas contributions were attributed to the alumina refining and electrolysis unit processes in both datasets, with electricity and thermal energy, being the major contributing factors to these higher values. The energy intensive nature of primary aluminium production means energy supply can significantly influence the overall environmental impact. Electricity production was found to contribute between 25 % and 80 % to all impact category indicator results, with higher values in the global dataset, a result of the inclusion of Chinese energy data and the increased share of coal-based electricity consumption that it represents.

Conclusions

The global aluminium industry remains dedicated to transparent reporting of its environmental impacts and ensuring that up-to-date, representative LCI data is available. Development of suitable methodologies for new indicators will be required to ensure that the industry continues to report accurately all its relevant impacts. Additionally, with the increased importance of Chinese aluminium production, inclusion of foreground data from Chinese production would further enhance the dataset from which the global impacts of aluminium production are assessed from cradle to gate.
  相似文献   

13.

Background, aim and scope

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.

Material and methods

A full life cycle assessment with regards to greenhouse gas emissions and savings has been carried out for different aluminium applications in cars as compared to the same applications in steel or cast iron. The case studies reference real cases, where aluminium is actually used in series production. The studies are based on a greenhouse gas lifecycle model, which has been developed following the ISO standard 14040 framework. For each component, sensitivity analysis is applied to determine the impact of lifetime driving distance, driving characteristics (impact of air friction) and recycling rate.

Results

Life cycle results show that in automotive applications, each kilogram of aluminium replacing mild steel, cast iron or high strength steel saves, depending on the specific case (bumper and motor block of a compact car, front hood of a large family car, body-in white of a luxury car), between 13 and 20 kg of greenhouse gas emissions.

Discussion

The performed sensitivity analysis finds that even with ‘worst case’ scenarios savings are still significant.

Conclusions

The results not only demonstrate significant benefits of aluminium with regard to greenhouse gas savings but also show that these are very sensitive to variations of the recycling rate, the life-time driving distance and the driving behaviour.

Recommendations and perspectives

Good care is needed to gather life-cycle data and to make informed estimates, where no data are available. Furthermore, greenhouse gas savings for additional components should be calculated using this life cycle model to sustain the findings.
  相似文献   

14.

Background, aim, and scope  

The management of municipal solid waste and the associated environmental impacts are subject of growing attention in industrialized countries. European Union has recently strongly emphasized the role of LCA in its waste and resource strategies. The development of sustainable solid waste management systems applying a life cycle perspective requires readily understandable tools for modeling the life cycle impacts of waste management systems. The aim of the paper is to demonstrate the structure, functionalities, and LCA modeling capabilities of the PC-based life cycle-oriented waste management model EASEWASTE, developed at the Technical University of Denmark specifically to meet the needs of the waste system developer with the objective to evaluate the environmental performance of the various elements of existing or proposed solid waste management systems.  相似文献   

15.

Background, aim, and scope  

During the last decades, the electronics industry has undergone tremendous changes due to intense research leading to advanced technology development. Multiple life cycle assessment (LCA) studies have been performed on the environmental implications of consumer electronics. The aim of this review is to assess the consistency between different LCA studies for desktop computers, laptop computers, mobile phones and televisions (TVs).  相似文献   

16.

Purpose  

The purpose of this paper is to take steps towards a life cycle assessment that is able to account for changes over time in resource flows and environmental impacts. The majority of life cycle inventory (LCI) studies assume that computation parameters are constants or fixed functions of time. This assumption limits the opportunities to account for temporal effects because it precludes consideration of the dynamics of the product system.  相似文献   

17.

Background, aim and scope  

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.  相似文献   

18.

Purpose and scope  

Two ISO-compliant approaches on modelling the recycling of plastics and metals are frequently applied in life cycle assessment case studies and intensively debated: the recycled content or cutoff approach and the end of life recycling or avoided burden approach. This paper discusses the two approaches from three different perspectives: (1) the kind of sustainability concept served, (2) the risk perception involved and (3) the eco-efficiency indicators resulting from the two approaches.  相似文献   

19.

Background, aim, and scope  

In spite of the increasing application of life cycle assessment (LCA) for engineering evaluation of systems and products, the application of LCA in the mining industry is limited. For example, a search in the Engineering Compendex database using the keywords “life cycle assessment” results in 2,257 results, but only 19 are related to the mining industry. Also, mining companies are increasingly adopting ISO 14001 certified environmental management systems (EMSs). A key requirement of ISO certified EMSs is continual improvement, which can be better managed with life cycle thinking. This paper presents a review of the current application of LCA in the mining industry. It discusses the current application, the issues, and challenges and makes relevant recommendations for new research to improve the current situation.  相似文献   

20.

Purpose  

The need for a systematic evaluation of the human and environmental impacts of engineered nanomaterials (ENMs) has been widely recognized, and a growing body of literature is available endorsing life cycle assessment (LCA) as a valid tool for the same. The purpose of this study is to evaluate how the nano-specific environmental assessments are being done within the existing framework of life cycle inventory and impact assessment and whether these frameworks are valid and/or whether they can be modified for nano-evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号