首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the role of CD4 molecule in T cell activation, the effect of anti-CD4 on T cell IL-2 production was examined by using an alloreactive Th clone. The alloreactive T cell used in the present experiments produced IL-2 in response to soluble anti-CD3 epsilon-chain (anti-CD3) without accessory cell or insoluble antibody carrier. The IL-2 production was suppressed by the addition of anti-CD4 in cultures. An intracellular free Ca2+ concentration ([Ca2+]i) of the T cell clone was elevated by anti-CD3 stimulation, but the elevation was suppressed in the presence of anti-CD4. When the clone was stimulated in Ca2(+)-free medium, the elevation of [Ca2+]i was not observed. When Ca2+ influx was induced by calcium ionophore A23187 or ionomycin, the clone produced IL-2 in response to anti-CD3 in the presence of anti-CD4. When polyclonal T cell line or several other alloreactive T cell clones were examined for their anti-CD3 response, essentially the same results as mentioned above were obtained. Taken together, these results suggest that the slow and sustained elevation of [Ca2+]i is an essential signal for IL-2 production of T cells, and that anti-CD4 suppresses the IL-2 production by interfering the [Ca2+]i elevation. The significance of CD4 molecules in murine T cell activation was discussed.  相似文献   

2.
The majority of peripheral CD4+ T lymphocytes proliferate in vitro in response to anti-CD3 in presence of autologous APC. The present study describes a subpopulation of CD4+ T cells that cannot be activated and progress into cell cycle by stimulation with anti-CD3 plus APC or with mitogenic combinations of anti-CD2. The in vitro responses of these anti-CD3-unresponsive CD4+ T cells were investigated with a panel of mAb to CD2, CD3, and CD28, and found to be similar to those previously observed for mature thymocytes: only the combination of anti-CD2 plus anti-CD28 produced cell proliferation. Anti-CD3-unresponsive T cells were CD45RA+, but represented only 14 to 22% of the CD4+, CD45RA+ T cell population. Activation with anti-CD2 plus anti-CD28 mAb resulted in major changes in the cell surface phenotype and functional properties: a loss of CD45RA+ occurred and an increased expression of CD45RO, CD29, and CD58 (LFA3), as well as a gain in responsiveness to anti-CD3 and anti-CD2. This change in CD45 phenotype from CD45RA to CD45RO occurs in both the anti-CD3-responsive and in the anti-CD3-unresponsive subsets of the CD45RA+, CD4+ cells after cell proliferation. The anti-CD3-unresponsive subset may represent a pool of not yet fully differentiated peripheral T cells. The acquisition of anti-CD3 responsiveness could occur as a consequence of Ag priming or by an Ag-independent mechanism. Involvement of the CD28 Ag in this process is suggested from the present study.  相似文献   

3.
Measurement of intracellular ionized calcium concentrations ([Ca2+]i) has been indispensable in elucidating the central role of [Ca2+]i as a trigger of cellular responses to activating stimuli. Such studies have employed the dye quin2, which has not been readily adapted to analysis of individual small cells. We show here that the calcium response of large numbers of single cells can be analyzed with the use of flow cytometry and the recently described dye, indo-1. Such analyses demonstrate for the first time the heterogeneous nature of the [Ca2+]i response to mitogenic stimuli within populations of peripheral blood lymphocytes (PBL). By simultaneous quantitation of one- or two-color surface immunofluorescence labels, some of this heterogeneity of [Ca2+]i response in PBL is shown to be related to cellular immunophenotype. Almost all T cells responded to anti-CD3 antibody; however, the response is greater among CD4+ than CD8+ cells, and within the CD4+ population the rate of response to stimulation by antibody to CD3 differed between subpopulations defined by expression of the common leukocyte marker p220. In contrast, not all T cells responded to phytohemagglutinin (PHA), even at very high doses. As with anti-CD3, after stimulation with PHA, CD4+ cells showed a larger proportion of responding cells than did CD8+ cells. In separate experiments, indo-1 was found not to impair reproductive viability of PBL, thereby providing the potential for analysis of functional activity after the separation of cells by sorting on the basis of the [Ca2+]i response to stimuli. Mixing experiments indicated that a response of a subpopulation representing as little as 0.3% of total cells could be readily detected. Thus, the flow cytometric assay with indo-1 is the first technique that allows the quantitative analysis of response differences of small subpopulations of cells and intercellular variation in [Ca2+]i.  相似文献   

4.
5.
Kinetics of MHC-antigen complex formation on antigen-presenting cells   总被引:4,自引:0,他引:4  
With the use of flow cytometry, we recorded changes in intracellular ionized calcium [Ca2+]i of Indo-1 loaded T cells that were triggered by contact with APC. This rapid readout of TCR perturbation enabled us to monitor the formation of stimulatory Ag-MHC complexes on EBV-transformed B cells that were either pulsed with native tetanus toxoid (TT) or with a 12-amino-acid fragment of this protein. Neither unpulsed APC nor Ag-specific APC that were pulsed with native Ag and kept at +4 degrees C were able to induce changes in basal T cell [Ca2+]i in TT-specific T cell clones. After 1 h at 37 degrees C, however, the Ag-pulsed APC were able to induce a three-to-fourfold increase in [Ca2+]i. This length of time appeared to be almost independent of the concentration of Ag with which the APC were pulsed, suggesting that the lag time was due more to intracellular transit than to association of the processed Ag with the MHC molecule. Furthermore, the same lag time and independence of Ag concentration were found when the EBV-transformed B cells were pulsed with a mouse-anti-transferrin receptor mAb and tested for their capacity to trigger a T cell clone specific for processed mouse Ig. This indicates that, in addition to surface Ig, other receptors that are internalized can function in the same fashion in the uptake and processing of a soluble Ag. In contrast to what was found with intact native Ag, no lag time was observed when the APC were pulsed with high concentrations of a 12-amino-acid peptide, containing the amino acid sequence recognized by a TT-specific T cell clone, suggesting that the formation of MHC-peptide complexes occurs instantly. Pulsing with a lower peptide concentration, however, caused the appearance of a time-dependent increase in efficacy of Ag presentation, suggesting a slow accumulation of MHC-peptide complexes on the B cell membrane.  相似文献   

6.
7.
To investigate the initial stages of recognition of the self idiotype (Id) by T cells, we examined the early increase in cytoplasmic free calcium ([Ca2+]i) occurring in murine CD4+ T cells specific for a model Id, Id315, following their interaction with the Id. The changes in [Ca2+]i were monitored with stopped-flow fluorometry by loading T cells with fura 2, a Ca(2+)-binding fluorescent dye. An increase of [Ca2+]i in the Id-specific T cell line was dependent on the presence of both antigen-presenting cells (APC) and Id315. When T cells were mixed with APC pulsed with M315 for 90 min at 37 C, a significant increase in T cell [Ca2+]i was observed within one second. A pronounced elevation in [Ca2+]i was also observed in T cells after their interaction with APC which had been pulsed for 90 min with VL-315 Id-containing proteins (such as VL-315, L315, Fv-315 or Fab'-315 fragments). In contrast, pulsing APC for 5 min with the VL fragment produced little or no change in the [Ca2+]i. These results suggest that VL must be further processed by APC before it can be recognized by T cells. Indeed, a synthetic VL region peptide (positions 91-108, designated as P18) produced an elevation in T cell [Ca2+]i when mixed with APC without pulsing.  相似文献   

8.
Using the ratiometric Ca2+ indicator, indo-1, the antigen-induced increase in intracellular Ca2+ concentration ([Ca2+]i) was measured in individual RBL-2H3 cells which had been passively sensitized with monoclonal antibody to the dintrophenyl (DNP) haptenic group. Antigenic stimulation using DNP-human serum albumin conjugate (DNP-HSA) induced concentration-dependent asynchronous Ca2+ oscillations, or irregular spikes. To achieve a quantitative comparison of the effects of different concentrations of antigen on changes in Ca2+[i, the area under the curve (AUC) of Ca2+ oscillations in each cell was calculated. The dose-response curve of the calculated AUC is consistent with the bell-shaped dose-response curve for antigen-induced mediator release, depolarization and 86Rb(+)-efflux. Ca2+ oscillations induced by antigenic stimulation were abolished by removal of external Ca2+ and the subsequent reintroduction of external Ca2+ caused their resumption. To investigate the role of Ca2+ oscillations in the secretory response, changes in [Ca2+]i induced by concanavalin A (Con-A), A23187, thapsigargin and NECA were also monitored. Con-A mimicked the response induced by antigen, whilst A23187 and thapsigargin induced a large transient non-oscillatory response. NECA, an adenosine receptor agonist, induced only a small transient rise in Ca2+[i without oscillatory behaviour. Since all these stimuli accept NECA-induced degranulation in these cells, it is suggested that, although Ca2+ oscillations are not essential for the initiation of secretion, they probably underlie the in-vivo physiological response of mast cells and basophils to an antigenic challenge. They also seem to enhance the efficacy of the Ca2+ signal.  相似文献   

9.
Movement of extracellular Ca2+ is required for the sustained increase in [Ca2+]i necessary for T cell activation. However, the mechanisms mediating mitogen-stimulated Ca2+ movement into T cells have not been completely delineated. To explore the possibility that a Na(+)-dependent Ca2+ (Na+/Ca2+) exchanger might play a role in the mitogen-induced increases in [Ca2+]i required for T cell activation, the effects of inhibitors of this exchanger were examined. Inhibitors of Na+/Ca2+ exchange suppressed the sustained increase in [Ca2+]i stimulated by ligation of the CD3-TCR complex, but did not affect mobilization of intracellular Ca2+ stores. Consistent with the importance of this prolonged increase in [Ca2+]i in T cell activation, Na+/Ca2+ exchange inhibitors, but not inhibitors of the Na+/H+ antiporter, inhibited DNA synthesis stimulated by immobilized anti-CD3 mAb. Inhibition only occurred when the agents were present during the first hours after stimulation. These agents also inhibited IL-2 production, but not expression of the IL-2R or of an early activation Ag, 4F2. Inhibition of IL-2 production did not account for the inhibition of T cell proliferation as addition of exogenous IL-2 or phorbol ester (PDB) did not overcome the inhibition. In contrast, activation pathways that are not thought to require an increase in [Ca2+]i such as IL-1 + PDB or engagement of CD28 in the presence of PDB were less sensitive to the suppressive effects of inhibitors of Na+/Ca2+ exchange. Thus, proliferation induced by these stimuli was not suppressed by low concentrations of these inhibitors and IL-2 production induced by mAb to CD28 + PDB was not inhibited by any concentration of inhibitors of Na+/Ca2+ exchange. These results suggest that stimulation of a Ca2+ transporter with the same spectrum of inhibition as the Na+/Ca2+ exchanger in other tissues mediates the sustained increase in [Ca2+]i required for T cell activation after CD3 ligation.  相似文献   

10.
Peripheral blood lymphocytes (PBL) from elderly donors have a reduced proliferative response to phytohemagglutinin (PHA) and anti-CD3 monoclonal antibodies (mAb) compared to those from young donors. To examine whether this is due to intrinsic deficiencies in proliferative potential of T-cell subsets, we compared the growth of unsorted PBL vs sorted CD4+ or CD8+ CD11- cells after anti-CD3 mAb or PHA stimulation. Unsorted PBL of elderly donors (greater than 65 years) showed a significant decrease in proliferation compared to young donors (20-30 years) when stimulated with anti-CD3 mAb or PHA. Sorted CD4+ and CD8+ cells were grown in culture in the absence of accessory cells under optimized growth conditions (CD28 mAb, interleukin 2 and beta-mercaptoethanol present). CD4+ cells from elderly donors showed no reduced growth after anti-CD3 mAb stimulation and only slightly decreased growth after stimulation with PHA. CD8+ CD11- cells from elderly donors, however, showed a 20-30% reduction in the proportion of cells proliferating in response to the mitogens and up to 40% reduction in the rate of cell-cycle progression of the responding cells. We examined whether this reduced proliferation is related to decreased efficiency of signal transduction by comparing this to the mobilization of intracellular free calcium ([Ca2+]i) and calcium channel activity after stimulation with anti-CD3 mAb or PHA. [Ca2+]i was measured in CD4 and CD8 subsets of young and elderly donors using a flow cytometric assay with the dye indo-1. Compared to cells from young donors, CD4+ cells from elderly donors showed a [Ca2+]i response which was up to 26% lower after stimulation with CD3 and 10% lower after stimulation with PHA. This appeared to be related to decreased calcium channel activity in elderly donors, rather than mobilization of intracellular Ca2+ stores. CD8+ cells from elderly donors, however, had a slightly, but significantly, greater [Ca2+]i response to CD3 mAb and PHA than did cells from young donors. Since the age-dependent defect in proliferation is mainly in CD8+ cells, but the [Ca2+]i decline is predominantly in the CD4+ subset, these results suggest that the reduced proliferation of T cells from older donors is not related to decreased efficiency of transmembrane signal transduction.  相似文献   

11.
Exposure of T94, a CD4+ V beta 8-expressing murine Th cell clone, or immediately ex vivo CD4+ T cells to deaggregated, bivalent antibodies specific for either the TCR or CD3 failed to induce an increase in [Ca2+]i, or activation of phosphatidylinositol hydrolysis unless cross-linked with a secondary anti-Ig antibody. In contrast, we show that a combination of two mAb directed against different components of the TCR/CD3 complex (145.2C11, anti-CD3 epsilon and F23.1, anti-V beta 8) successfully induce second messenger formation, that is, without any requirement for a secondary antibody. This requirement for either a secondary antibody or two independent bivalent antibodies to activate second messenger production in T cells suggested that the signal transduction apparatus may be activated by multiple TCR/CD3 complexes being brought together on the T cell surface. This was supported by the observation that conditions inducing increased T cell [Ca2+]i through the TCR/CD3 complex also resulted in aggregation of the TCR/CD3 complex on the T cell surface. Conversely, binding of anti-TCR/CD3 antibodies to the T cell under conditions that did not induce increased [Ca2+]i also failed to induce surface TCR/CD3 redistribution. Cross-linking of the CD4 accessory molecule on T94 also resulted in increased [Ca2+]i, with kinetics similar to those observed after TCR/CD3 oligomerization. CD4 is involved in the recognition of invariant regions of MHC class II during Ag presentation and has been proposed to be associated with TCR/CD3 in the absence of Ag. Aggregation of TCR/CD3 and subsequent second messenger formation was achieved by combinations of mAb to distinct determinants within the complex due to the stable association of these determinants within the T cell membrane. We therefore assessed the functional association of CD4 with the TCR/CD3 complex by examining whether a combination of mAb directed against CD4 and CD3 or TCR induced second messenger formation. We found that anti-CD4 in combination with F23.1 or with 145.2C11 failed to induce increases in [Ca2+]i. Furthermore, mAb to CD4 failed to inhibit the increase in [Ca2+]i observed with the combination of 145.2C11 and F23.1. We therefore conclude that CD4 is not stably associated with TCR or CD3 in the absence of Ag/MHC class II composites.  相似文献   

12.
Calcium fluxes in T lymphocytes.   总被引:3,自引:0,他引:3  
Mechanisms controlling Ca2+ fluxes through the plasma membrane of lymphocytes have been characterized in a human T-cell clone and in the Jurkat T-cell line. Due to endogenous buffers, about 1/125 of the Ca2+ ions that enter the cell are free. Ca2+ fluxes were estimated from the variations in intracellular Ca2+ concentration ([Ca2+]i) elicited by concentration jumps in extracellular Ca2+ ([Ca2+]o). Thapsigargin was used to inhibit Ca2+ uptake into intracellular stores and to stimulate Ca2+ entry. Ca2+ extrusion was strictly due to the activity of plasma membrane Ca(2+)-ATPases since there was no detectable Na+/Ca2+ exchange activity in these cells. The rate of Ca2+ extrusion was mainly influenced by [Ca2+]i and less by [Ca2+]o but was insensitive to cell depolarization. In depolarized cells, thapsigargin-induced Ca2+ influx was reduced to 10% of the value measured in normally polarized cells, suggesting that depolarization not only reduces the electrochemical gradient for Ca2+ ions, but also inhibits Ca2+ permeation. When Ca2+ ions enter the cell, they bind to a site inside the channel, with a Kd of 3.3 mM. Stimulation of clonal T-cells with low concentrations of either anti-CD3 antibodies or thapsigargin elicited Ca2+ oscillations. Both the amplitude and the frequency of CD3-induced Ca2+ oscillations were sensitive to [Ca2+]o. These oscillations were immediately interrupted when extracellular Ca2+ was removed. The properties of Ca2+ oscillations in T lymphocytes suggest that they are mainly due to variations of Ca2+ influx, modulated by variations in [Ca2+]i.  相似文献   

13.
The induction of T cell unresponsiveness by rapidly modulating CD3   总被引:6,自引:0,他引:6  
The immunomodulatory effects of an IgM anti-CD3 mAb (38.1) were investigated. 38.1 was distinct from other anti-CD3 mAb, in that it was rapidly modulated from the cell surface in the absence of a secondary antibody. Although 38.1 induced an immediate increase in intracellular free calcium [Ca2+]i by highly purified T cells, it did not induce entry of the cells into the cell cycle in the absence of accessory cells (AC) or a protein kinase C-activating phorbol ester. Clearing of 38.1 from the surface of AC-depleted T cells, documented both by immunofluorescence and by functional activity, was rapid, with markedly reduced levels of initially bound mAb observed after a 1 to 2 h incubation at 37 degrees C and complete modulation noted after a 5-h incubation. Despite rapid modulation of 38.1, the T cells continued to express substantial amounts of surface CD3, suggesting there is a rapid rate of turnover of CD3 molecules on resting T cells. After modulation of 38.1 bound CD3, T cells were markedly inhibited in their capacity to respond to PHA. Inhibition could be overcome by culturing the cells with supplemental AC or IL-2. The inhibitory effects of 38.1 could be mimicked by briefly pulsing cells with the calcium ionophore, ionomycin, that had no effect on surface expression of CD3. 38.1- or ionomycin-pulsed cells were inhibited in their subsequent response to PHA even when exposures were carried out in the presence of EGTA to prevent increases in [Ca2+]i from extracellular sources. Inhibition could not be accounted for by an inability of the ionomycin-treated or 38.1-modulated T cells to increase [Ca2+]i in response to PHA. These studies demonstrate that a state of T cell nonresponsiveness can be induced by modulating CD3 with an anti-CD3 mAb in the absence of co-stimulatory signals. A brief increase in [Ca2+]i resulting from mobilization of internal calcium stores appears to be sufficient to induce this state of T cell nonresponsiveness.  相似文献   

14.
Intercellular Ca2+ signaling in primary cultures of glial cells was investigated with digital fluorescence video imaging. Mechanical stimulation of a single cell induced a wave of increased [Ca2+]i that was communicated to surrounding cells. This was followed by asynchronous Ca2+ oscillations in some cells. Similar communicated Ca2+ responses occurred in the absence of extracellular Ca2+, despite an initial decrease in [Ca2+]i in the stimulated cell. Mechanical stimulation in the presence of glutamate induced a typical communicated Ca2+ wave through cells undergoing asynchronous Ca2+ oscillations in response to glutamate. The coexistence of communicated Ca2+ waves and asynchronous Ca2+ oscillations suggests distinct mechanisms for intra- and intercellular Ca2+ signaling. This intercellular signaling may coordinate cooperative glial function.  相似文献   

15.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

16.
Ag stimulation of rat basophilic leukemia (RBL-2H3) cells results in hydrolysis of inositol phospholipids, a transient increase in concentration of cytosol Ca2+ [( Ca2+]i), a gradual increase in cytosolic pH (pHi) and the activation of protein kinase C. To determine whether all these changes serve as signals for secretion, studies were conducted with cells permeabilized with streptolysin O in which pHi and [Ca2+]i could be varied independently of each other and enzyme activities could be manipulated. At resting pHi (approximately 7.0) and [Ca2+]i (0.1 microM), the permeabilized cells showed little secretory response to Ag. At resting pHi, elevated levels of Ca2+ (0.33 microM) were required for maximal secretory response to Ag. At a pHi of 7.4, however, 0.1 microM [Ca2+]i was sufficient to sustain near maximal responses to Ag. Therefore, a small increase of [Ca2+]i to 0.33 microM was required to initiate secretion, but once the pHi was elevated secretion could be sustained at near basal levels of [Ca2+]i. Since elevating the [Ca2+]i and pHi, by themselves promoted little secretion, another potentiating signal must have been generated by antigen stimulation. This signal was possibly transduced via hydrolysis of inositol phospholipids and protein kinase C. Even with an elevated [Ca2+]i (0.33 microM) the hydrolysis of the phospholipids and secretion stimulated by Ag were inhibited by guanosine 5'(2-O-thio)diphosphate and neomycin. Furthermore, both protein-kinase C and the secretory response to Ag were lost after permeabilized cells were washed but both were retained if cells were exposed to PMA before permeabilization.  相似文献   

17.
The free intracellular calcium ion concentration ([Ca2+]i) was measured in single cells of a population containing 65-80% somatotrophs, using the fluorescent Ca(2+)-indicator Fura-2 and digital imaging microscopy. Spontaneous oscillations in [Ca2+]i ranging in frequency up to 1.5 oscillations per minute were observed in 30% of somatotrophs. These Ca2+ oscillations were blocked by the Ca2+ channel blocker CoCl2 and were thus proposed to be the result of influx of Ca2+ into the cell, possibly as the result of spontaneous electrical activity. GHRH (10-100 nM) increased [Ca2+]i in 61% of the cells studied, although the amplitude and dynamics of the response varied from cell to cell. Typically [Ca2+]i rose from 170 +/- 26 nM to 321 +/- 44 nM (n = 13) in response to a challenge with 66 nM GHRH. GHRH also increased the frequency of Ca2+ oscillations in a number of cells, and some previously quiescent cells showed Ca2+ oscillations following addition of GHRH. Forskolin, which raises cAMP levels in bovine anterior pituitary cells, also stimulated a sustained rise in [Ca2+]i in 10 out of 14 cells tested. Somatostatin (SS) (10-80 nM) rapidly reduced basal [Ca2+]i, blocked Ca2+ oscillations, and blocked the [Ca2+]i response to GHRH. The Ca2+ channel blocker CoCl2 (4 mM) had similar actions on [Ca2+]i to those of SS. These results suggest that GHRH and SS may regulate GH release by modulating Ca2+ entry into the cell through the cell membrane. The [Ca2+]i oscillations seen in a proportion of the somatotrophs were modulated in frequency by GHRH and SS, and are probably generated by influx of Ca2+ through channels in the cell membrane. Thus GH secretion may be regulated by changes in the mean level of [Ca2+]i, which in turn, may be influenced by the frequency of [Ca2+]i oscillations in bovine somatotrophs.  相似文献   

18.
Interaction of the glycosyl phosphatidylinositol-linked differentiation Ag CD73 (ecto-5'-nucleotidase) with the CD73-specific mAb 1E9 generates agonistic signals that strongly synergize with T cell activation induced by CD3 and CD2 mAb. This synergy is observed only when 1E9 is immobilized on plastic and occurs in the absence of accessory cells or exogenous lymphokines. 1E9 induces a rapid (though transient) increase in [Ca2+]i in a minor proportion (20 to 30%) of unfractionated T lymphocytes (presumably CD73+ cells). However, this [Ca2+]i mobilization is not sufficient to fully activate CD73+ T cells, as shown by the requirement of additional signals such as CD3 or CD2 stimulation to initiate T cell proliferation. These signals cannot be substituted by the exogenous lymphokines, rIL-1, rIL-2, or rIL-4, or PMA (when T cells are rigorously depleted of monocytes). These data indicate that CD73 may behave as an accessory molecule regulating interactions between T cells and antigens or APC. A comparison was carried out with mAb 9.3 to the differentiation Ag CD28, another agonistic molecule with activating properties similar to CD73. Despite their lower percentage, the ability of CD73+ T cells to amplify the proliferation induced by CD3 or CD2 mAb was equivalent or even greater than that of CD28+ T cells. Once activated, CD73+ cells may recruit the remaining (CD73-) cells primed by CD3 or CD2 stimulation. Based on these data, we suggest that CD73+ T lymphocytes may be a specialized subset to amplify immune responses originated by the CD3 and CD2 activation pathways. Finally, the functional association between CD73 and integral membrane molecules like CD3 and CD2 suggests that GPI-anchored molecules may play a role in transmembrane signaling mediated by conventional second messenger systems.  相似文献   

19.
The ability of mAb to class I MHC molecules, CD3, or CD4/CD8 to stimulate human T cell clones alone or in combination was examined. Cross-linking each of these surface Ag with appropriate mAb and goat anti-mouse Ig (GaMIg) resulted in a unique pattern of increase in intracellular free calcium ([Ca2+]i) and different degrees of functional activation. Cross-linking class I MHC molecules provided the most effective stimulus of IL-2 production and proliferation. Cross-linking more than one surface Ag induced a compound calcium signal with characteristics of each individual response. Cross-linking CD3 + HLA-A,B,C caused a rapid and prolonged increase in [Ca2+]i and synergistically increased IL-2 production and proliferation of all clones. Cross-linking CD3 + CD4/CD8 also generated a compound calcium signal and increased IL-2 production and DNA synthesis. Purposeful inclusion of CD3 was not required for costimulation as cross-linking HLA-A,B,C + CD4/CD8 also increased [Ca2+]i, IL-2 production, and proliferation. Cross-linking three surface Ag, CD3 + HLA-A,B,C + CD4/CD8, resulted in the greatest initial and sustained [Ca2+]i, IL-2 production, and DNA synthesis. Although there was a tendency for the various stimuli to increase both [Ca2+]i and functional responsiveness, neither the magnitude nor duration of the increased [Ca2+]i correlated with the amount of IL-2 produced or the ultimate proliferative response. To determine whether costimulation required that the various surface molecules were cross-linked together, experiments were carried out using isotype specific secondary antibodies. Augmentation of [Ca2+]i and costimulation of functional responses were noted when class I MHC molecules were cross-linked and CD3 was bound, but not cross-linked. Similarly, costimulation through CD3 and CD4/CD8 was observed when CD4/CD8 was cross-linked and the CD3 complex was engaged by an anti-CD3 mAb which was not further cross-linked. In contrast, costimulation by class I MHC molecules and CD4/CD8 was only observed when these molecules were cross-linked together. These data demonstrate that cross-linking class I MHC determinants or CD4/CD8 provides a direct signal to T cell clones that can be enhanced when CD3 is independently engaged. The results also indicate that T cell clones can be stimulated without engaging CD3 by the combination of signals delivered via class I MHC molecules and CD4/CD8, but only when these determinants were cross-linked together. These studies have demonstrated that these cell surface molecules differ in their capacity to deliver activation signals to T cell clones and also exhibit unique patterns of positive cooperativity in signaling potential.  相似文献   

20.
Cross-linking class I MHC molecules on human T cell clones by reacting them with various mAb directed at either monomorphic or polymorphic determinants on class I MHC molecules followed by cross-linking with GaMIg stimulated a rise in intracellular free calcium concentration ([Ca2+]i), and induced proliferation and IL-2 production. T cell clones varied in the mean density of class I MHC molecules and the capacity to respond to mAb to class I MHC molecules. However, the functional responses of the clones did not correlate with class I MHC density or the CD4/CD8 phenotype. mAb to polymorphic class I MHC determinants were less able to induce an increase in [Ca2+]i and a functional response in the T cell clones. Additive stimulatory effects were noted when mAb against both HLA-A and HLA-B determinants were employed. Cross-linking class I MHC molecules on Jurkat cells induced a rise by [Ca2+]i and induced IL-2 production upon co-stimulation with PMA. Cross-linking class I MHC molecules on mutant Jurkat cells that expressed diminished levels of CD3 and were unable to produce IL-2 in response to anti-CD3 stimulation triggered both a rise in [Ca2+]i and IL-2 production with PMA co-stimulation. In contrast, cross-linking class I MHC molecules on mutant Jurkat cells that were CD3- stimulated neither a rise in [Ca2+]i nor IL-2 production. The combination of mAb to CD28 or ionomycin and PMA, however, was able to induce IL-2 production by CD3- Jurkat cells. The data demonstrate that cross-linking class I MHC molecules delivers a functionally important signal to T cell clones and Jurkat cells and indicate that class I MHC molecules may function to transduce activation signals to T cells. In addition, the data demonstrate that transmission of an activation signal via class I MHC molecules requires CD3 expression. The data, therefore, support a central role for CD3 in the transduction of activation signals to T cells via class I MHC molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号