首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Immune precipitation with monospecific antiserum was employed to study the intracellular synthesis of viral glycoproteins gp85 and gp37. Labeled gp85 and gp37 were detected from lysates of cells transformed with Rous sacroma virus, strain B77, after long-term labeling with radioactive glucosamine or phenylalanine. Immune precipitates prepared from lysates of cells pulse-labeled for a short time resulted in a glycoprotein of 92,000 molecular weight (gp92). This precursor was stable in B77-transformed Japanese quail cells for several hours, whereas in chicken cells it could be chased within a few hours into virion glycoproteins gp85 and gp37. Similarly, the precursor for the structural viral proteins, pr76, persisted in quail cells much longer than in chicken cells. During very short pulses or in the presence of a glucosamine block (25 mM glucosamine), the antiserum against the viral envelope glycoproteins detected a precursor of higher electrophoretic mobility of approximately 70,000 molecular weight, "p70." Fucose label entered gp92 and gp85 as well as "p70." Proteolytic treatment of virion-bound gp85 in vitro generated two discrete glycoproteins of 62,000 and 45,000 molecular weight, but did not result in an increase in the amount of gp37.  相似文献   

2.
3.
A 96,000-dalton glycoprotein, p(96), was present in cell extracts obtained from gs-chf- chicken embryo fibroblasts infected with the avian RNA tumor viruses Rous-associated virus-2 subgroup B (RAV-2) and the Schmidt-Ruppin strain of Rous sarcoma virus subgroup A (SR-RSV-A), as well as from uninfected gsLchf+ (HE) cell extracts. It was not found in cell extracts from uninfected gs-chf- or gs+chf+ (HH) cells, nor from gs-chf- cells infected with envelope-deficient Bryan high-titer Rous sarcoma virus. Immunoprecipitation, kinetic, and biochemical data indicate the this polyprotein contains information that gives rise to the major virion glycoprotein gp85. A second polyprotein of 80,000 daltons, p/80), is also present in the RAV-2- and SR-RSV-A-infected gs-chf- cells. This second polyprotein contains less carbohydrate than p(96), and kinetic and biochemical data indicate that p(80) may be an immature form of p(96).  相似文献   

4.
Blood samples were collected from a local strain of chickens associated with serious tumor cases in Shandong Province.The samples were inoculated into chicken embryo fibroblast and DF-1 cells for virus isolation and identification,respectively.The inoculated cells were screened for three common chicken tumor viruses.Nine strains of avian leukosis virus subgroup J(ALV-J) were identified,and were designated LY1201‐LY1209.The env gene from the LY1201 strain was amplified and cloned.All nine resultant env clones(clones 01-09) were sequenced,and the gp85 and gp37 amino acid regions were subjected to homology analysis.Clones 01 and 03 had 10 amino acid deletions in the gp85 region compared to the other seven clones,suggesting that at least two quasispecies with obvious mutations coexist in the same field strain.Among these nine clones,three had identical gp85 and gp37 sequences,and were recognized as the dominant LY1201 quasispecies.The amino acid sequence homology of gp37 and gp85 among the nine clones was 98.5%-100.0% and 96.6%-100.0% respectively,suggesting that the gp85 region of the env gene can better display the quasispecies diversity of ALV-J than gp37.  相似文献   

5.
We determined the sites of synthesis of avian sarcoma virus-specific proteins in infected chicken cells by immunoprecipitation of the products synthesized in vitro by free and membrane-bound polyribosomes; 85% of Pr76, the precursor of the viral internal structural proteins (group-specific antigens), was synthesized on free polyribosomes, and 15% was synthesized on membrane-bound polyribosomes. Pr92, the lycosylated precursor of the viral glycoproteins (gp85 and gp35), was synthesized exclusively on membrane-bound polyribomes, which is consistent with its role as a membrane protein. When we investigated the site of synthesis of pp60src, the product of the avian sarcoma virus src gene, we found that 90% was synthesized on free polyribosomes, whereas 10% was detected on membrane-bound polyribosomes. The implications of these results with respect to the subcellular location of pp60src are discussed.  相似文献   

6.
A J Dorner  J M Coffin 《Cell》1986,45(3):365-374
The virion envelope glycoprotein gp85 confers a high degree of subgroup specificity for interaction with distinct cell receptors. Specific subgroups of gp85 have been associated with a cytopathic virus-cell interaction, most likely resulting from reduced resistance to superinfection, which allows the buildup of excessive amounts of viral DNA. Previous nucleotide sequence analysis of the gp85 coding region identified small regions of variable amino acid sequence within a conserved framework. To define the role of these variable regions we constructed a series of molecular clones carrying novel combinations of variable regions from viruses. Analysis of rescued virus shows that receptor binding is determined by the interaction of two major regions and one minor region in the middle of gp85. Cytopathogenicity is not associated with any specific variable region but rather with the ability to recognize the subgroup B receptor on chicken cells.  相似文献   

7.
Viral protein synthesis in Moloney murine leukemia virus infected high passage mouse embryo cells was studied utilizing monospecific antisera to the viral core protein p30 and envelope protein gp71. Pulse-chase analysis of [35S]methionine-labeled polypeptides in combination with the demonstration of the presence of either gp71 or p30-specific antigenic determinants in them indicated a 84,000-dalton polypeptide as the precursor of viral glycoproteins and four metabolically unstable polypeptides of approximate molecular weights 88,000, 72,000, 62,000, and 39,000 as the precursors of viral core protein, p30. The p30-containing 88,000 and 72,000-dalton polypeptides were distinctly seen in this system under normal growth conditions. Further, the processing of p30 precursors was very rapid and was complete during a 40 min chase while only partial processing of glycoprotein precursor was observed during the same period.  相似文献   

8.
Cells stably infected with Rous sarcoma virus were treated with tunicamycin to prevent the glycosylation of the precursor (pr92gp) to the two viral envelope glycoproteins gp85 and gp35. Pretreatment of the cells for 4 h with the antibiotic resulted in a 90% reduction in [3H]mannose incorporation into total cellular glycoproteins, intracellular viral glycoproteins, and released virus particles. Protein synthesis and virus particle formation were not significantly affected by the treatment. A new polypeptide made in the presence of the drug was identified by immunoprecipitation of pulse-labeled cell lysates with monospecific anti-gp85 and anti-gp35 sera. This polypeptide, migrating on sodium dodecyl sulfate-polyacrylamide gels as a molecule of 62,000 daltons (pr62), contained no [3H]mannose, was labeled with [S35]methionine and [3H]arginine, could not be chased into the higher-molecular-weight glycosylated form, and contained the same [3H]arginine tryptic peptides as pr92gp. The unglycosylated pr62 was still detectable 2 h after the pulse labeling of the cells. The lack of glycosylation of pr62 did not seem to reduce its stability. No clear evidence for the incorporation of this molecule or its cleavage products into viral particles could be obtained. To code for an envelope polypeptide of 62,000 daltons, only about 1,500 nucleotides or 15% of the total coding capacity of the virus are needed.  相似文献   

9.
A scheme was developed for the subcellular fractionation of murine erythroleukemia cells transformed by Friend leukemia virus. The subcellular localization of the env-related glycoproteins was determined by immune precipitation with antiserum against gp70, the envelope glycoprotein of the helper virus, followed by gel electrophoresis. In cells labeled for 2 h with [35S]methionine, the glycoprotein encoded by the defective spleen focus-forming virus, gp55SFFV, was found primarily in the nuclear fraction and in fractions containing dense cytoplasmic membranes such as endoplasmic reticulum. A similar distribution was noted for gp85env, the precursor to gp70. The concentration of viral glycoproteins in the nuclear fraction could not be accounted for by contamination with endoplasmic reticulum. In pulse-chase experiments, neither glycoprotein underwent major redistribution. However, labeled gp85env disappeared from intracellular membranes with a half-time of 30 min to 1 h, whereas labeled gp55SFFV was stable during a 2-h chase. In plasma membrane preparations with very low levels of contamination with endoplasmic reticulum, gp70 was the major viral env-related glycoprotein detected; a minor amount of gp55SFFV and no gp85env could be detected. The unexpected result of these experiments is the amount of viral glycoproteins found in the nuclear fraction. Presence of viral proteins in the nucleus could be relevant to the mechanism of viral leukemogenesis.  相似文献   

10.
K J Dunn  C C Yuan    D G Blair 《Journal of virology》1993,67(8):4704-4711
We have characterized the restriction mechanism for RD114 virus replication in embryonic feline cells (FeF). By comparing growth properties of the virus in FeF cells with its behavior in a fetal feline glial cell line (G355) permissive for RD114, we showed that both cell lines were readily infectible by virus grown in permissive cells and that no significant differences in viral integration or viral RNA expression could be detected. However, analysis of viral protein expression revealed differences in viral env gene processing in the two cell types. Envelope precursor pR85 was produced, but the expected processed gp70 product was detectable only in permissive (G355) cells. An envelope product of 85 kDa was packaged into virions produced by FeF cells, while virions produced by G355 cells contained the expected RD114 gp70. While the gp85 env-containing virions were infectious for permissive G355 cells, they were unable to infect FeF cells. The block to infection by the gp85-containing particles in FeF cells could be abrogated by treatment with the glycosylation inhibitor tunicamycin. Our results indicate that restriction of RD114 virus involves a novel mechanism dependent on two factors: altered glycosylation of the envelope to a gp85 form and an altered RD114 receptor in FeF cells.  相似文献   

11.
Gs is an allele of chickens for the expression of endogenous avian leukosis virus-related core (gs) and envelope (chf) antigens. Progeny of a genetic cross in which Gs was segregating were analyzed for endogenous viral DNA as well as for the expression of endogenous viral antigens. Viral genetic information was identified by cleavage of embryo DNA with restriction endonucleases, electrophoretic separation of the resulting fragments, and identification of bands containing viral sequences by hybridization of the DNA to 32P-labeled viral RNA. Four different chromosomal sites of residence of endogenous viral sequences were identified by this method. These sites were the same as those previously assigned to the endogenous viral loci ev 1, ev 3, ev 4, and ev 5. ev 1 was present in all of the progeny of the cross. ev 3, ev 4, and ev5 were present in various combinations with ev 1. ev 3 cosegregated with the gs+chf+ phenotpye. Cells which did not contain ev 3 but contained ev 1, ev 4, and/or ev 5, did not express detectable levels of viral antigens. We suggest that Gs contains the structural genes for endogenous virus which reside at ev 3 and that these structural genes code for gs and chf in gs+chf+ cells.  相似文献   

12.
The envelope gene gp85 of ev/J,a new family of endogenous avian retroviral sequences identified recently, has the most extensive nucleotide sequence identity ever described with ALV-J avian ieukosis virus. This report described expression of ev/J envelope gene gp85 derived from commercial meat-type chicken using the Invitrogen Bac-to-Bac baculovirus expression system. The antigenicity and immunoreactivity of the recombinant endogenous gp85 gene product (SU) were analyzed by indirect immunofluorescence, Western blot, indirect and blocking Enzyme-Linked ImmunoSorbent Assay (ELISA) using JE9 monoclonal antibody (MAb) against the envelope protein of ALV-J (ADOL-4817), positive mouse antiserum against the ev/J gp85 SU and sera from chicken naturally infected with ALV-J. The results showed that the ev/J gp85 SU can bind specifically to JE9 MAb and antiserum from chicken naturally infected with ALV-J, and the binding reactivity between exogenous ALV-J gp85 SU and natural positive chicken serum against exogenous ALV-J can be blocked by positive mouse serum against the ev/J gp85 SU. It is concluded that recombinant endogenous gp85 gene product (SU) has close immunological relatedness to the envelope protein of exogenous ALV-J (ADOL-4817 and IMC<,10200> strain).  相似文献   

13.
The 70,000 molecular weight glycoprotein (gp70) of a type-C RNA virus originally isolated from a woolly monkey has been partially purified and immunologically characterized. Evidence that this viral protein is viral coded was derived from studies showing its antigenic properties to be unaltered by virus passage in cells of different species. A broadly reactive competition immunoassay was developed utilizing antiserum prepared against feline leukemia virus to precipitate 125I-labeled woolly monkey virus gp70. Gibbon and woolly viruses, as well as feline and several mouse type-C viruses, all reacted with equal efficiency in this assay. In contrast, an endogenous virus of the baboon failed to cross-react, suggesting that viruses of this latter group are less immunologically related to the others. In a homologous competition immunoassay for the woolly viral glycoprotein, the woolly virus was readily distingusihed from otherwise colsely related viruses of gibbon apes. These findings demonstrate the pronounced type-specific antigenic dterminants possessed by this viral protein. The antigenic determinants of gp70 responsible for neutralization have also been investigated.  相似文献   

14.
Subgroup D avian sarcoma and leukosis viruses can penetrate a variety of mammalian cells in addition to cells from their natural host, chickens. Sequences derived from the gp85-coding domain within the env gene of a mammal-tropic subgroup D virus (Schmidt-Ruppin D strain of Rous sarcoma virus [SR-D RSV]) and a non-mammal-tropic subgroup B virus (Rous-associated virus type 2) were recombined to map genetic determinants that allow penetration of mammalian cells. The following conclusions were based on host range analysis of the recombinant viruses. (i) The determinants of gp85 that result in the mammal tropism phenotype of SR-D RSV are encoded within the 160 codons that lie 3' of codon 121 from the corresponding amino terminus of the gp85 protein. (ii) Small linear domains of the SR-D RSV gp85-coding domain placed in the subgroup B background did not yield viruses with titers equal to that of the subgroup D virus in a human cell line. (iii) Recombinant viruses that contained subgroup D sequences within the hr1 variable domain of gp85 showed modest-to-significant increases in infectivity on human cells relative to chicken cells. A recombinant virus that contained three fortuitous amino acid substitutions in the gp85-coding domain was found to penetrate the human cell line and give a titer similar to that of the subgroup D virus. In addition, we found that the subgroup D virus, the mutant virus, and recombinant viruses with an increased mammal tropism phenotype were unstable at 42 degrees C. These results suggest that the mammal tropism of the SR-D strain is not related to altered receptor specificity but rather to an unstable and fusogenic viral glycoprotein. A temperature sensitivity phenotype for infectivity of mammalian cells was also observed for another mammal-tropic avian retrovirus, the Bratislava 77 strain of RSV, a subgroup C virus, but was not seen for any other avian retrovirus tested, strengthening the correlation between mammal tropism and temperature sensitivity.  相似文献   

15.
Three monoclonal antibodies, which recognized two nonoverlapping antigenic domains and were reactive to the bovine viral diarrhea virus (BVDV) p80 protein, were found to cross react with the p125 protein of both cytopathic and noncytopathic BVDVs and a molecular weight 175,000 BVDV protein (p175). Results from limited proteolysis and chemical cleavage experiments confirmed the relatedness of these three proteins. In pulse-chase experiments it was apparent that p175 was a transient protein, as it was diminished during the chase, with a half-life of about 30 min. However, both p125 and p80 were also observed in short-pulsed lysates. Furthermore, during the chase, radiolabel was not found to accumulate into p125 or p80. Rather, these two proteins were stable with half-lives greater than 2 h. A fourth nonglycosylated protein, p37, increased during the chase. Processing of several glycoproteins was evident in these experiments. A glycoprotein of molecular weight 75,000 (gp75) diminished during the chase period, while glycoproteins gp62, gp48, and gp25 appeared or increased during the chase period. In contrast, the glycoprotein gp53 was a major protein in pulse-labeled cell lysates and remained constant throughout the chase period. In further experiments two stable forms of p80 differing in intramolecular disulphide bonding were observed.  相似文献   

16.
Interferon treatment of JLSV-6 cells chronically infected with Rauscher MuLV leads to the formation of noninfectious particles (interferon virions) containing the structural proteins of env and gag genes as well as additional viral polypeptides. In the control virions the major glycoprotein detected is gp71, interferon virions contain in addition to gp71 and 85k dalton (gp85) glucosamine-containing, fucose-deficient glycoprotein which is recognized by antiserum to MuLV but not by the gp71 antiserum. The surface iodination of the intact virions indicates that both gp71 and gp85 are the major components of the external virions envelope. However, unlike the control virions in which gp71 associates with p15E (gp90), the gp71-p15E complex was not detected in interferon virions. The analysis of the iodinated proteins of the disrupted interferon virions revealed the presence of 85k and 65k dalton polypeptides preciptable with antiserum against MuLV, which are not present in the control virions. The difference in the polypeptide pattern of virions produced in the presence of interferon does not seem to be a consequence of the slowdown in the synthesis of viral proteins or their processing in the interferon-treated cells. Both the structural proteins of env and gag genes seem to be synthesized and processed at a comparable rate in the interferon-treated and -untreated cells. These results indicate an alteration of virus assembly in the presence of interferon.  相似文献   

17.
18.
The kinetics of cleavage of pr92gp, the precursor of the two glycoproteins of Rous sarcoma virus gp85 and gp35, were followed. Viral glycoproteins were detected by immunoprecipitation with anti-gp85 and anti-gp35 serum. It could be shown in pulse-chase experiments that little or no intracellular cleavage of the precursor took place during the time in which the majority of newly synthesized viral glycoprotein was exported from the cells. Soon after its synthesis, however, pr92gp underwent some modification that made it migrate slightly faster on sodium dodecyl sulfate-polyacrylamide gels. Under steady state conditions the precursor was shown to be the predominant form of intracellular viral glycoprotein. Virus which was harvested every 2 min from infected cells prelabeled for 90 min with [3H]mannose contained mostly uncleaved and only a little mature glycoprotein. By incubation of this freshly released virus in serum-free buffer, the majority of the glycoprotein precursor could be cleaved into mature gp85 and gp35. Virus harvested every 10 min contained only mature glycoproteins.  相似文献   

19.
J S Brugge  E Erikson  R L Erikson 《Cell》1981,25(2):363-372
Sera from rabbits bearing tumors induced by Rous sarcoma virus (RSV) were previously found to contain antibody to the RSV transforming protein, pp60src. Two additional transformation-specific phosphoproteins from RSV-transformed avian cells are immunoprecipitated with these sera. These proteins, having molecular weights of 90,000 (pp90) and 50,000 (pp50), are not precipitated from uninfected or transformation-defective virus-infected cells and are not related to any RSV structural proteins. Neither pp50 nor pp90 shares any partial or complete proteolytic cleavage peptides with pp60src, suggesting that pp90 and pp50 do not represent either a precursor or a cleavage product of pp60src. Sedimentation analysis of RSV-transformed cell lysates on glycerol gradients revealed that the RSV pp60src protein is present as two forms, one of which represents the majority (95%) of pp60src and sediments as a monomer, 60,000 molecular weight protein and the other of which sediments with pp90 and pp50 as an apparent 200,000 molecular weight complex. Lysates from cells transformed by viruses containing a temperature-sensitive defect in the src gene contain a greater percentage of pp60src associated with pp90 and pp50 under both permissive (35°C) and nonpermissive (41°C) conditions compared to wild-type virus-infected cell lysates. Phosphoserine and phosphotyrosine were found associated with pp60src molecules that sedimented as a monomer, whereas pp60src molecules that are complexed with pp90 and pp50 contain phosphoserine and greatly reduced amounts of phosphotyrosine. Only the monomer form of pp60src is capable of phosphorylating IgG in the immune complex phosphotransferase reaction. Normal uninfected chicken cells contain a protein that shares identical partial proteolytic cleavage peptides with the pp90 protein immunoprecipitated from RSV-transformed cells. This pp90 protein is one of the major cytoplasmic proteins in uninfected cells. Antibody directed against pp90 also immunoprecipitates pp60src and pp50 from lysates of RSV-transformed chicken cells.  相似文献   

20.
The env gene of avian sarcoma-leukosis viruses codes for envelope glycoproteins that determine viral host range, antigenic specificity, and interference patterns. We used molecular hybridization to analyze the natural distribution and possible origins of the nucleotide sequences that encode env; our work exploited the availability of radioactive DNA (cDNA(gp)) complementary to most or all of env. env sequences were detectable in the DNAs of chickens which synthesized an env gene product (chick helper factor positive) encoded by an endogenous viral gene and also in the DNAs of chickens which synthesized little or no env gene product (chick helper factor negative). env sequences were not detectable in DNAs from Japanese quail, ring-necked pheasant, golden pheasant, duck, squab, salmon sperm, or calf thymus. The detection of sequences closely related to viral env only in chicken DNA contrasts sharply with the demonstration that the transforming gene (src) of avian sarcoma viruses has readily detectable homologues in the DNAs of all avian species tested [D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature (London) 260: 170-173, 1976] and in the DNAs of other vertebrates (D. Spector, personal communication). Thermal denaturation studies on duplexes formed between cDNA(gp) and chicken DNA and also between cDNA(gp) and RNAs of subgroup A to E viruses derived from chickens indicated that these duplexes were well matched. In contrast, cDNA(gp) did not form stable hybrids with RNAs of viruses which were isolated from ring-necked and golden pheasants. We conclude that substantial portions of nucleotide sequences within the env genes of viruses of subgroups A to E are closely related and that these genes probably have a common, perhaps cellular, evolutionary origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号