首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously shown that N18TG2 neuroblastoma cells express the type 6 adenylyl cyclase and that preincubation with nitric oxide (NO) attenuates Gs- and forskolin-stimulated activity. Here we show that this inhibition reflects a direct action of NO on the adenylyl cyclase. Preincubation of N18TG2 cell membranes and insect cell membranes expressing recombinant type 5 and type 6 isoforms with NO donors leads to an inhibition of forskolin-stimulated adenylyl cyclase activity. NO donors do not alter the type 1 (representative of the type 1,3,8 family) or type 2 (representative of the type 2,4, 7 family) isoforms expressed in insect cells, even under conditions of compromised assay conditions or a range of temperatures. Thus, the ability of NO to inhibit adenylyl cyclase stimulation is dependent upon the nature of the isoform present, and appears to represent a unique regulation of the type 5,6 isoform family.  相似文献   

2.
Nitric oxide (NO) donors inhibit hormone- and forskolin-stimulated adenylyl cyclase activity in purified plasma membrane preparations from N18TG2 neuroblastoma cells. Northern blot analyses indicate that the predominant isoform of adenylyl cyclase in N18TG2 cells is the type VI. Our experiments eliminate all the known regulatory proteins for this isoform as possible targets of NO. NO decreases the Vmax of the enzyme without altering the Km for ATP. Occupancy of the substrate-binding site protects the enzyme from the inhibitory effects of NO, suggesting that the conformation of the enzyme determines its sensitivity. The inhibition is reversed by reducing agents, implicating a Cys residue(s) as the target for nitric oxide and an S-nitrosylation as the underlying modification. These findings implicate NO as a novel cellular regulator of the type VI isoform of adenylyl cyclase.  相似文献   

3.
Pretreatment of mouse brain membranes with arachidonic acid (AA) and related unsaturated fatty acids at 30 degrees C for 10 min decreased basal activity and isoproterenol/guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)- and forskolin-stimulated activities of adenylyl cyclase to a level less than 5% of control. The presence of the carboxyl group on the fatty acids was essential for the inhibition, because no such inhibition was found with ethyl arachidonate or AA attached to diacylglycerols and phospholipids. The AA-mediated inhibition was observed when the activity was measured in the presence of Mn2+ or forskolin and was insensitive to pertussis toxin or guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS), indicating a mechanism independent of GTP-binding proteins. In addition, the fact that stimulators of the adenylyl cyclase catalytic unit, ATP, GTP gamma S and forskolin, when present during pretreatment, attenuate the inhibitory effect of AA may suggest that the catalytic unit is a target of AA. Bovine serum albumin suppressed the inhibition when present in the mixtures for pretreatment, but could not restore the adenylyl cyclase activity that had been reduced by AA, indicating an irreversible inhibition by AA. The effect of AA was found to be additive to P-site-mediated inhibition. The present study suggests the existence of another mechanism of regulation of adenylyl cyclase by unsaturated fatty acids.  相似文献   

4.
Various neurotransmitters, such as dopamine, stimulate adenylyl cyclase to produce cAMP, which regulates neuronal functions. Genetic disruption of the type 5 adenylyl cyclase isoform led to a major loss of adenylyl cyclase activity in a striatum-specific manner with a small increase in the expression of a few other adenylyl cyclase isoforms. D1 dopaminergic agonist-stimulated adenylyl cyclase activity was attenuated, and this was accompanied by a decrease in the expression of the D1 dopaminergic receptor and G(s)alpha. D2 dopaminergic agonist-mediated inhibition of adenylyl cyclase activity was also blunted. Type 5 adenylyl cyclase-null mice exhibited Parkinsonian-like motor dysfunction, i.e. abnormal coordination and bradykinesia detected by Rotarod and pole test, respectively, and to a lesser extent locomotor impairment was detected by open field tests. Selective D1 or D2 dopaminergic stimulation improved some of these disorders in this mouse model, suggesting the partial compensation of each dopaminergic receptor signal through the stimulation of remnant adenylyl cyclase isoforms. These findings extend our knowledge of the role of an effector enzyme isoform in regulating receptor signaling and neuronal functions and imply that this isoform provides a site of convergence of both D1 and D2 dopaminergic signals and balances various motor functions.  相似文献   

5.
Adenylyl cyclase plays an important role in olfactory signaltransduction. Recently, a novel type III adenylyl cyclase hasbeen localized in olfactory neurons (Pfeuffer et al., 1989;Bakalyar and Reed, 1990). Because amitriptyline (AMI), a tricyclicantidepressant, appears to have an inhibitory effect on adenylylcyclase activity in other in other neuronal tissue (Yamaokaet al., 1988; Wong et al., 1991), we measured the effect ofAMI on forskolin-stimulated adenylyl cyclase activity in membranepreparations of olfactory mucosa from adult rats. In the presenceof 5'-guanylyl-imidodiphosphate, AMI (0.5–8.0 µM)inhibited forskolin-stimulated adenylyl cyclase activity ina dose-dependent manner. To determine whether this effect wasspecific for olfactory neurons, as opposed to other cells inthe olfactory epithelium, rats were unilaterally bulbectomizedin order to reduce selectively the number of olfactory neuronson the side ipsilateral to the bulbectomy. In membrane preparationsfrom unilaterally bulbectomized animals we saw significantlylower adenylyl cyclase activity in ipsilateral olfactory mucosa,compared with adenylyl cyclase activity from non-bulbectomizedmucosa. These results indicate that AMI inhibition of adenylylcyclase activity is primariy localized in olfactory neurons.  相似文献   

6.
Opioid agonists bind to GTP-binding (G-protein)-coupled receptors to inhibit adenylyl cyclase. To explore the relationship between opioid receptor binding sites and opioid-inhibited adenylyl cyclase, membranes from rat striatum were incubated with agents that block opioid receptor binding. These agents included irreversible opioid agonists (oxymorphone-p-nitrophenylhydrazone), irreversible antagonists [naloxonazine, beta-funaltrexamine, and beta-chlornaltrexamine (beta-CNA)], and phospholipase A2. After preincubation with these agents, the same membranes were assayed for high-affinity opioid receptor binding [3H-labeled D-alanine-4-N-methylphenylalanine-5-glycine-ol-enkephalin (mu), 3H-labeled 2-D-serine-5-L-leucine-6-L-threonine enkephalin (delta), and [3H]ethylketocylazocine (EKC) sites] and opioid-inhibited adenylyl cyclase. Although most agents produced persistent blockade in binding of ligands to high-affinity mu, delta, and EKC sites, no change in opioid-inhibited adenylyl cyclase was detected. In most treated membranes, both the IC50 and the maximal inhibition of adenylyl cyclase by opioid agonists were identical to values in untreated membranes. Only beta-CNA blocked opioid-inhibited adenylyl cyclase by decreasing maximal inhibition and increasing the IC50 of opioid agonists. This effect of beta-CNA was not due to nonspecific interactions with G(i), Gs, or the catalytic unit of adenylyl cyclase, as neither guanylylimidodiphosphate-inhibited, NaF-stimulated, nor forskolin-stimulated activity was altered by beta-CNA pretreatment. Phospholipase A2 decreased opioid-inhibited adenylyl cyclase only when the enzyme was incubated with brain membranes in the presence of NaCl and GTP. These results confirm that the receptors that inhibit adenylyl cyclase in brain do not correspond to the high-affinity mu, delta, or EKC sites identified in brain by traditional binding studies.  相似文献   

7.
We have previously shown that treatment of rats with the nitric oxide (NO) synthase inhibitor N6-nitro-L-arginine methyl ester for 4 weeks resulted in the augmentation of blood pressure and enhanced levels of Gialpha proteins. The present studies were undertaken to investigate if NO can modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMC) and primary cultured cells from aorta of Sprague-Dawley rats were used for these studies. The cells were treated with S-nitroso-N-acetylpenicillamine (SNAP) or sodium nitroprusside (SNP) for 24 h and the expression of Gialpha proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [alpha-32P]ATP. Treatment of cells with SNAP (100 microM) or SNP (0.5 mM) decreased the expression of Gialpha-2 and Gialpha-3 by about 25-40% without affecting the levels of Gsalpha proteins. The decreased expression of Gialpha proteins was reflected in decreased Gi functions (receptor-independent and -dependent) as demonstrated by decreased or attenuated forskolin-stimulated adenylyl cyclase activity by GTPgammaS and inhibition of adenylyl cyclase activity by angiotensin II and C-ANP4-23, a ring-deleted analog of atrial natriuretic peptide (ANP) that specifically interacts with natriuretic peptide receptor-C (NPR-C) in SNAP-treated cells. The SNAP-induced decreased expression of Gialpha-2 and Gialpha-3 proteins was not blocked by 1H[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one, an inhibitor of soluble guanylyl cyclase, or KT5823, an inhibitor of protein kinase G, but was restored toward control levels by uric acid, a scavenger of peroxynitrite and Mn(111)tetralis (benzoic acid porphyrin) MnTBAP, a peroxynitrite scavenger and a superoxide dismutase mimetic agent that inhibits the production of peroxynitrite, suggesting that NO-mediated decreased expression of Gialpha protein was cGMP-independent and may be attributed to increased levels of peroxynitrite. In addition, Gsalpha-mediated stimulation of adenylyl cyclase by GTPgammaS, isoproterenol, and forskolin was significantly augmented in SNAP-treated cells. These results indicate that NO decreased the expression of Gialpha protein and associated functions in VSMC by cGMP-independent mechanisms. From these studies, it can be suggested that NO-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which NO regulates blood pressure.  相似文献   

8.
《Life sciences》1992,50(5):PL19-PL24
The mechanism by which the inhibitory effect of d-ala2-met-enkephalinamide (DALA) on lacrimal acinar adenylyl cyclase is exerted was assessed in membrane preparations by a cAMP protein binding assay. Inhibition by the analogue was GTP-dependent with a significant enhancement of the inhibitory effect by GTP. While pretreatment of membranes with either cholera or pertussis toxin resulted in stimulation of adenylyl cyclase activity, modification of the G subunit by pertussis-toxin catalyzed ADP-ribosylation did not effect the hormonal inhibition of adenylyl cyclase. Incubation of membranes with manganese, however, prevented the inhibitory action of DALA in addition to enhancing basal and forskolin-stimulated adenylyl cyclase activity. The results suggest that the inhibitory effect of DALA in lacrimal acinar cells is exerted via a mechanism other than pertussis-toxin sensitive coupling of the receptor to adenylyl cyclase through Gi. The mechanism may be effected through a pertussis-toxin insensitive G protein, through an interaction with Gi that is pertussis-toxin insensitive, or through an interaction with the catalytic subunit of adenylyl cyclase.  相似文献   

9.
In this study, the influence of the inhibitory mu-opioid receptor on the potencies of 5'-guanosine alpha-thiotriphosphate (GTP gamma S) and GDP at the inhibitory GTP-binding protein (Gi) were investigated in an adenylyl cyclase system. It was hoped that a receptor-mediated change in the potency of either GTP gamma S or GDP in affecting adenylyl cyclase activity may elucidate how a receptor alters cyclase activity via its G-protein. In an adenylyl cyclase system employing 5'-adenylyl imidodiphosphate as substrate, GTP gamma S, a nonhydrolyzable analog of GTP, inhibited forskolin-stimulated adenylyl cyclase activity in the absence of morphine; morphine failed to significantly affect the apparent potency of GTP gamma S. GDP blocked the GTP gamma S-induced inhibition of adenylyl cyclase; morphine profoundly diminished the ability of GDP to block the inhibitory effect of GTP gamma S. The IC50 values of GTP gamma S were 0.02 +/- 0.01, 0.18 +/- 0.04, and 2.2 +/- 0.5 microM in the absence of other drugs, in the presence of a combination of 100 microM GDP and morphine, and in the presence of 100 microM GDP, respectively. GDP blocked the inhibitory effect of GTP gamma S (0.3 microM) in a concentration-dependent manner; the EC50 for GDP was 16 +/- 2.6 microM in the absence of morphine and 170 +/- 32 microM in the presence of morphine. Exposure of 7315c cells to pertussis toxin for 3 h resulted in a small decrease in the potency of GTP gamma S in inhibiting cyclase. However, the relative potency of GDP in blocking the GTP gamma S-mediated inhibition of cyclase was increased: the EC50 values of GDP were 11 +/- 4 and 0.81 +/- 0.2 microM in untreated and pertussis toxin-treated membranes, respectively. In untreated membranes, there was a brief lag in the GTP gamma S-induced inhibition of adenylyl cyclase; morphine diminished this lag. In membranes treated with pertussis toxin, there was an exaggerated lag in the onset of GTP gamma S inhibition of adenylyl cyclase activity; morphine could no longer affect this lag. Thus, uncoupling the mu-opioid receptor from Gi appeared to increase the affinity of Gi for GDP. These data suggest that the effect of an inhibitory receptor is to decrease the affinity of Gi for GDP by virtue of its interaction with the carboxy-terminal region of Gi alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Tyrosine kinase-mediated serine phosphorylation of adenylyl cyclase   总被引:2,自引:0,他引:2  
Receptor tyrosine kinase (RTK) activation is associated with modulation of heptahelical receptor-stimulated adenylyl cyclase responses. The mechanisms underlying the RTK-mediated enhancement of adenylyl cyclase function remain unclear. In the present studies, we show that the tyrosine kinase-dependent enhancement of adenylyl cyclase isoform VI function parallels an enhancement in serine phosphorylation of the enzyme. This effect was mediated by both RTK activation, with IGF-1, and by tyrosine phosphatase inhibition, with sodium orthovanadate. This enhancement of adenylyl cyclase function was not attenuated by inhibitors of ERK, PKC, PKA, or PI3 kinase activity but was blunted by inhibition of endogenous p74(raf-1)() activity. To characterize the molecular site of this effect we identified multiple candidate serine residues in and adjacent to the adenylyl cyclase VI C1b catalytic region and performed serine-to-alanine site-directed mutagenesis using adenylyl cyclase VI as a template. Mutation of serine residues 603 and 608 or serine residues 744, 746, 750, and 754 attenuated both the tyrosine kinase-mediated enhancement of enzyme phosphorylation as well as the sensitization of function. Together, these data define a novel tyrosine kinase-mediated mechanism leading to serine phosphorylation of adenylyl cyclase isoform VI and the sensitization of adenylyl cyclase responsiveness.  相似文献   

11.
Type I adenylyl cyclase is a neurospecific enzyme that is stimulated by Ca2+ and calmodulin (CaM). This enzyme couples the Ca2+ and cyclic AMP (cAMP) regulatory systems in neurons, and it may play an important role for some forms of synaptic plasticity. Mutant mice lacking type I adenylyl cyclase show deficiencies in spatial memory and altered long-term potentiation (Z. Wu, S. A. Thomas, Z. Xia, E. C. Villacres, R. D. Palmiter, and D. R. Storm, Proc. Natl. Acad. Sci. USA 92:220-224, 1995). Although type I adenylyl cyclase is synergistically stimulated by Ca2+ and G-protein-coupled receptors in vivo, very little is known about mechanisms for inhibition of the enzyme. Here, we report that type I adenylyl cyclase is inhibited by CaM kinase IV in vivo. Expression of constitutively active or wild-type CaM kinase IV inhibited Ca2+ stimulation of adenylyl cyclase activity without affecting basal or forskolin-stimulated activity. Type I adenylyl cyclase has two CaM kinase IV consensus phosphorylation sequences near its CaM binding domain at Ser-545 and Ser-552. Conversion of either serine to alanine by mutagenesis abolished CaM kinase IV inhibition of adenylyl cyclase. This suggests that the activity of this enzyme may be directly inhibited by CaM kinase IV phosphorylation. Type VIII adenylyl cyclase, another enzyme stimulated by CaM, was not inhibited by CaM kinase II or IV. We propose that CaM kinase IV may function as a negative feedback regulator of type I adenylyl cyclase and that CaM kinases may regulate cAMP levels in some cells.  相似文献   

12.
Adenylyl cyclase, a major target enzyme of beta-adrenergic receptor signals, is potently and directly inhibited by P-site inhibitors, classic inhibitors of this enzyme, when the enzyme catalytic activity is high. Unlike beta-adrenergic receptor antagonists, this is a non- or uncompetitive inhibition with respect to ATP. We have examined whether we can utilize this enzymatic property to regulate the effects of beta-adrenergic receptor stimulation differentially. After screening multiple new and classic compounds, we found that some compounds, including 1R,4R-3-(6-aminopurin-9-yl)-cyclopentanecarboxylic acid hydroxyamide, potently inhibited type 5 adenylyl cyclase, the major cardiac isoform, but not other isoforms. In normal mouse cardiac myocytes, contraction induced by low beta-adrenergic receptor stimulation was poorly inhibited with this compound, but the induction of cardiac myocyte apoptosis by high beta-adrenergic receptor stimulation was effectively prevented by type 5 adenylyl cyclase inhibitors. In contrast, when cardiac myocytes from type 5 adenylyl cyclase knock-out mice were examined, beta-adrenergic stimulation poorly induced apoptosis. Our data suggest that the inhibition of beta-adrenergic signaling at the level of the type 5 adenylyl cyclase isoform by P-site inhibitors may serve as an effective method to prevent cardiac myocyte apoptosis induced by excessive beta-adrenergic stimulation without deleterious effect on cardiac myocyte contraction.  相似文献   

13.
14.
Treatment of rat hepatocyte plasma membranes with five novel synthetic heteroprostanoids of A- and E-types significantly decreased basal activity of adenylyl cyclase. Inhibition of forskolin-stimulated activity of the enzyme was seen as well. The maximal effective concentration for all substances tested was found at approximately 5x10(-6)-1x10(-5) M. The values of half maximal concentration (IC50) for all prostanoids were at the region of 0.7-1.1 microM. Prostanoids belonging to cyclopentenone group A (U-39, U-26) were less active than analogs of 11-deoxy-PGE1 (TA-227, TA-280, and TA-239). The strongest inhibitory effect of adenylyl cyclase activity (more than 3 times) was determined in the presence of prostanoid TA-227 possessing hydrophobic 15-phenyl ring and isoxazol group in omega-chain. The investigation of AC activity in the presence of different concentrations of prostanoids and varying concentrations of Mg x ATP has demonstrated that a non-comprehensive mechanism with particular effect takes place in case of AC inhibition by the heteroprostanoids.  相似文献   

15.
The nitric oxide (NO) donor, GEA 3162, inhibited isoproterenol-induced cyclic AMP (cAMP) accumulation in a concentration- and time-dependent manner in mouse parotid acini; SIN-1 mimicked these effects. Inhibition of stimulated cAMP accumulation was independent of phosphodiesterase activity. GEA 3162 also inhibited forskolin-induced cAMP accumulation. Removal of extracellular Ca(2+), addition of La(3+), or the calmodulin (CaM) inhibitor, calmidazolium, did not prevent the NO-mediated response, and addition of the soluble guanylyl inhibitor, ODQ, did not reverse GEA 3162-induced inhibition of cAMP accumulation. GEA 3162 also inhibited adenylyl cyclase in vitro independently of Ca(2+)/CaM. Further studies revealed that the NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), reduced significantly thapsigargin-induced Ca(2+) release and capacitative Ca(2+) entry and reversed thapsigargin inhibition of the AC Type 5/6 isoform (AC5/6). Data suggest that NO produced endogenously has dual effects on cAMP accumulation in mouse parotid acini, an inhibitory effect on AC activity and a modulatory effect on capacitative Ca(2+) entry resulting in AC5/6 inhibition.  相似文献   

16.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

17.
The five muscarinic acetylcholine receptors (M1–M5) are differentially expressed in the brain. M2 and M4 are coupled to inhibition of stimulated adenylyl cyclase, while M1, M3 and M5 are mainly coupled to the phosphoinositide pathway. We studied the muscarinic receptor regulation of adenylyl cyclase activity in the rat hippocampus, compared to the striatum and amygdala. Basal and forskolin-stimulated adenylyl cyclase activity was higher in the striatum but the muscarinic inhibition was much lower. Highly selective muscarinic toxins MT1 and MT2—affinity order M1 ≥ M4 >> others—and MT3—highly selective M4 antagonist—did not show significant effects on basal or forskolin-stimulated cyclic AMP production but, like scopolamine, counteracted oxotremorine inhibition. Since MTs have negligible affinity for M2, M4 would be the main subtype responsible for muscarinic inhibition of forskolin-stimulated enzyme. Dopamine stimulated a small fraction of the enzyme (3.1% in striatum, 1.3% in the hippocampus). Since MT3 fully blocked muscarinic inhibition of dopamine-stimulated enzyme, M4 receptor would be responsible for this regulation. Diana Jerusalinsky and Edgar Kornisiuk contributed equally to this paper.  相似文献   

18.
A significant increase of guanylylimidodiphosphate (GppNHp)-, fluoride-, and forskolin-stimulated adenylyl cyclase was observed in synaptic membrane preparations from rat cerebral cortex subsequent to chronic electroconvulsive shock (ECS) treatment. This effect required at least five treatments over a course of 10 days. The inhibition of adenylyl cyclase induced by GppNHp was not affected by these treatments. The dissociation constant (KD) and maximal binding for the photoaffinity GTP analog, [32P]P3-(4-azidoanilido)-P1-5'-GTP [( 32P]AAGTP), to each of the synaptic membrane G proteins also were unchanged after ECS treatment. Nonetheless, the transfer of [32P]AAGTP from Gi to Gs, which we suggest is indicative of the coupling between Gs and the adenylyl cyclase catalytic moiety, was accelerated by chronic ECS treatment but not by acute or sham treatment. Furthermore, chemical uncoupling of Gs from adenylyl cyclase rendered membranes from treated animals indistinguishable from controls. Finally, in all cases tested, membranes prepared from animals subjected to chronic treatment with amitriptyline or iprindole showed similar changes in the Gs-mediated activation of adenylyl cyclase. Acute treatments produced effects similar to controls, and liver and kidney membranes from animals receiving chronic treatment showed no changes in adenylyl cyclase despite the marked changes seen in brain. These results suggest that chronic administration of ECS enhances coupling between Gs and adenylyl cyclase enzyme and modifies interactions between Gs and Gi.  相似文献   

19.
It is generally accepted that G protein-coupled receptors stimulate soluble guanylyl cyclase (sGC)-mediated cGMP production indirectly, by increasing nitric oxide (NO) synthase activity in a calcium- and kinase-dependent manner. Here we show that normal and GH(3) immortalized pituitary cells expressed alpha(1)beta(1)-sGC heterodimer. Activation of adenylyl cyclase by GHRH, pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and forskolin increased NO and cGMP levels, and basal and stimulated cGMP production was abolished by inhibition of NO synthase activity. However, activators of adenylyl cyclase were found to enhance this NO-dependent cGMP production even when NO was held constant at basal levels. Receptor-activated cGMP production was mimicked by expression of a constitutive active protein kinase A and was accompanied with phosphorylation of native and recombinant alpha(1)-sGC subunit. Addition of a protein kinase A inhibitor, overexpression of a dominant negative mutant of regulatory protein kinase A subunit, and substitution of Ser(107)-Ser(108) N-terminal residues of alpha(1)-subunit with alanine abolished adenylyl cyclase-dependent cGMP production without affecting basal and NO donor-stimulated cGMP production. These results indicate that phosphorylation of alpha(1)-subunit by protein kinase A enlarges the NO-dependent sGC activity, most likely by stabilizing the NO/alpha(1)beta(1) complex. This is the major pathway by which adenylyl cyclase-coupled receptors stimulate cGMP production.  相似文献   

20.
Anandamide (AEA) has vasodilator activity, which can be terminated by cellular re-uptake and degradation. Here we investigated the presence and regulation of the AEA transporter in human umbelical vein endothelial cells (HUVECs). HUVECs take up AEA by facilitated transport (apparent K(m) = 190 +/- 10 nm and V(max) = 45 +/- 3 pmol. min(-1).mg(-1) protein), which is inhibited by alpha-linolenoyl-vanillyl-amide and N-(4-hydroxyphenyl)-arachidonoylamide, and stimulated up to 2.2-fold by nitric oxide (NO) donors. The NO scavenger hydroxocobalamin abolishes the latter effect, which is instead enhanced by superoxide anions but inhibited by superoxide dismutase and N-acetylcysteine, a precursor of glutathione synthesis. Peroxynitrite (ONOO(-)) causes a 4-fold activation of AEA transport into cells. The HUVEC AEA transporter contributes to the termination of a typical type 1 cannabinoid receptor (CB(1)) -mediated action of AEA, i.e. the inhibition of forskolin-stimulated adenylyl cyclase, because NO/ONOO(-) donors and alpha-linolenoyl-vanillyl-amide/N-(4-hydroxyphenyl)-arachidonoylamide were found to attenuate and enhance, respectively, this effect of AEA. Consistently, activation of CB(1) cannabinoid receptors by either AEA or the cannabinoid HU-210 caused a stimulation of HUVEC inducible NO synthase activity and expression up to 2.9- and 2. 6-fold, respectively. Also these effects are regulated by the AEA transporter. HU-210 enhanced AEA uptake by HUVECs in a fashion sensitive to the NO synthase inhibitor Nomega-nitro-l-arginine methyl ester. These findings suggest a NO-mediated regulatory loop between CB(1) cannabinoid receptors and AEA transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号