首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Intestinal absorption offolates has been characterized as a facilitative process with a low pHoptimum. Studies with intestinal epithelial cells have suggested thatthis activity is mediated by the reduced folate carrier (RFC1). In thispaper, we report on folate transport characteristics in an immortalizedrat IEC-6 cell line that was found to exhibit the predominant influxactivity for methotrexate (MTX) at pH 5.5 with a low level of activity at pH 7.4. Transfection of this cell line with an RFC1 construct resulted in clones exhibiting increased MTX uptake at both the pHs andhigh folic acid uptake only at the low pH. For the two clones with thehighest level of transport activity, relative MTX influx at the two pHswas reversed. Moreover, the low pH MTX influx activity([MTX]e = 0.5 µM) was markedly inhibited by 20 µM folic acid while influx at neutral pH was not. Furthermore, in thepresence and absence of glucose at low pH, MTX and folic acid influxactivity was inhibited by azide, while MTX influx at pH 7.4 wasstimulated by azide in the absence of glucose but was unchanged in thepresence of glucose and azide. This was contrasted with the results oftransfection of the same RFC1 construct into an L1210 murine leukemiacell line bearing a nonfunctional endogenous carrier. In this case, theactivity expressed was only at pH 7.4. These data indicate that RFC1can exhibit two distinct types of folate transport activities inintestinal cells that must depend on tissue-specific modulators.

  相似文献   

3.
Rogers syndrome is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus, and sensorineural deafness. The gene associated with this disease encodes for thiamine transporter 1 (THTR1), a member of the SLC19 solute carrier family including THTR2 and the reduced folate carrier (RFC). Using transient transfections into NIH3T3 cells of a D93H mutant THTR1derived from a Rogers syndrome family, we determined the expression, post-translational modification, plasma membrane targeting and thiamine transport activity. We also explored the impact on methotrexate (MTX) transport activity of a homologous missense D88H mutation in the human RFC, a close homologue of THTR1. Western blot analysis revealed that the D93H mutant THTR1 was normally expressed and underwent a complete N-glycosylation. However, while this mutant THTR1 was targeted to the plasma membrane, it was completely devoid of thiamine transport activity. Consistently, introduction into MTX transport null cells of a homologous D88H mutation in the hRFC did not result in restoration of MTX transport activity, thereby suggesting that D88 is an essential residue for MTX transport activity. These results suggest that the D93H mutation does not interfere with transporter expression, glycosylation and plasma membrane targeting. However, the substitution of this negatively charged amino acid (Asp93) by a positively charged residue (His) in an extremely conserved region (the border of transmembrane domain 2/intracellular loop 2) in the SLC19 family, presumably inflicts deleterious structural alterations that abolish thiamine binding and/or translocation. Hence, this functional characterization of the D93H mutation provides a molecular basis for Rogers syndrome.  相似文献   

4.
Two biochemically distinct systems, the high affinity folate receptor and the lower affinity reduced-folate carrier, have each been implicated in mediating the transport of folates and antifolates into cells. Previous studies from our laboratory have shown that methotrexate accumulation into wild type (WT) ZR-75-1 human breast cancer cells involves a system with characteristics of the reduced-folate carrier, that this system is deficient in methotrexate resistant (MTXR) ZR-75-1 cells in which methotrexate transport is undetectable and that neither breast cancer cell line expresses folate receptors. In this report we examined the possible interaction of the reduced-folate carrier with folate receptors by stably transfecting both WT ZR-75-1 and MTXR ZR-75-1 cells with an expression vector containing a folate receptor cDNA. Clones of stably transfected MTXR ZR-75-1 and WT ZR-75-1 cells expressing comparable levels of folate receptors were studied and compared to the nontransfected cell lines. Although nontransfected WT and MTXR ZR-75-1 cell lines require concentrations > or = 100 nM folic acid for growth, the expression of folate receptors in transfected WT and MTXR ZR-75-1 cells permitted the growth of both cell lines in low concentrations (1 nM) of folic acid. While the defect in the reduced-folate carrier system in MTXR ZR-75-1 cells inhibits their growth in medium containing low concentrations of folinic acid (< or = 1 microM), MTXR ZR-75-1 cells expressing folate receptors display uninhibited growth in 1 nM folinic acid. The accumulation of folic acid, folinic acid, and methotrexate is enhanced in folate receptor-transfected WT ZR-75-1 cells and MTXR ZR-75-1 cells. Furthermore, the accumulation of folates and antifolate was similar in both transfected WT and MTXR ZR-75-1 cell lines that expressed folate receptors. This suggests that alterations in the reduced-folate carrier do not affect folate receptor function. We also examined the effect of folate receptor expression on the sensitivity of WT and MTXR ZR-75-1 cells to methotrexate and to the lipophillic antifolate trimetrexate. Increased folate receptor expression decreased the sensitivity of WT ZR-75-1 cells toward the antifolate trimetrexate, presumably through increased uptake of reduced folates. Although the expression of the folate receptor enhanced the growth of both cell lines in low folate concentrations, it did not affect the sensitivity of either WT or MTXR ZR-75-1 cells to methotrexate.  相似文献   

5.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological over-production of extracellular matrix components may be linked to the availability of UDP-glucuronic acid, therefore UGDH is a potential therapeutic target. RNA interference (RNAi) has been adapted to knock down the expression of human UGDH. A UGDH siRNA plasmid was constructed using a pRNA-U6.1/Neo vector and transfected into breast cancer cells, ZR-75-1, with an efficiency of up to 50%. Western blot analysis showed that the UGDH expression was efficiently knocked down at protein levels by RNAi in ZR-75-1 cells.  相似文献   

6.
7.
8.
The dopamine transporter (DAT) substrates dopamine, d-amphetamine (AMPH), and methamphetamine are known to rapidly and transiently reduce DAT activity and/or surface expression in dorsal striatum and heterologous expression systems. We sought to determine if similar substrate-induced regulation of DATs occurs in rat nucleus accumbens. In dorsal striatum synaptosomes, brief (15-min) in vitro substrate pre-exposure markedly decreased maximal [3H]dopamine uptake velocity whereas identical substrate pre-exposure in nucleus accumbens synaptosomes produced a smaller, non-significant reduction. However, 45 min after systemic AMPH administration, maximal ex vivo [3H]dopamine uptake velocity was significantly reduced in both brain regions. Protein kinase C inhibition blocked AMPH's down-regulation of DAT activity. DAT synaptosomal surface expression was not modified following either the brief in vitro or in vivo AMPH pre-exposure but was reduced after a longer (1-h) in vitro pre-exposure in both brain regions. Together, our findings suggest that relatively brief substrate exposure results in greater down-regulation of DAT activity in dorsal striatum than in nucleus accumbens. Moreover, exposure to AMPH appears to regulate striatal DATs in a biphasic manner, with an initial protein kinase C-dependent decrease in DAT-mediated uptake velocity and then, with longer exposure, a reduction in DAT surface expression.  相似文献   

9.
目的:构建DEK的pcDNA3-Flag表达载体,研究其对抑癌基因p53启动子活性的影响。方法:以乳腺文库为模板,PCR扩增DEK编码序列,克隆到pcDNA3-Flag载体,构建成pcDNA3-Flag-DEK,转染293T细胞,Western印迹鉴定peDNA3-Flag载体介导的DEK的表达,萤光素酶报告基因活性实验研究DEK对p53启动子活性的影响。结果:双酶切实验证实得到pcDNA3-Flag-DEK阳性克隆;Western印迹实验发现DEK在293T细胞内表达;转录活性实验表明在ZR75-1乳腺癌细胞中,DEK呈剂量依赖性抑制p53启动子的活性。结论:构建了DEK的真核表达载体,并发现此表达载体能在ZR75-1乳腺癌细胞中抑制p53启动子活性。  相似文献   

10.
11.
12.
Small interfering RNA duplexes containing 21-22 nucleotides that mediate sequence-specific mRNA degradation and inhibitory RNA (iRNA) for Sp1 mRNA were used in this study to investigate the role of Sp1 on basal and hormone-induced growth and transactivation in MCF-7 and ZR-75 human breast cancer cells. Transfection of Sp1 iRNA in MCF-7 or ZR-75 cells for 36-44 h decreased Sp1 protein (50-70%) in nuclear extracts, and immunohistochemical analysis showed that the Sp1 protein in transfected MCF-7 cells was barely detectable. In cell cycle progression studies in MCF-7 cells, decreased Sp1 protein was accompanied by a decrease in cells in the S phase and an increase in cells in G(0)/G(1), and estrogen-induced G(0)/G(1) --> S phase progression was inhibited in cells treated with iRNA for Sp1. Sp1 iRNA also specifically blocked basal and estrogen-induced transactivation in cells transfected with a GC-rich construct linked to a luciferase reporter gene (pSp1(3)), and this was accompanied by decreased Sp1 binding to this GC-rich promoter as determined in gel mobility shift and chromatin immunoprecipitation assays. These results clearly demonstrate the key role of the Sp1 protein in basal and estrogen-induced growth and gene expression in breast cancer cells.  相似文献   

13.
Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by fluorescence microscopy, underscoring the possible role of Mac-2BP as an E-selectin ligand. In summary, breast cancer cells express Mac-2BP as a novel E-selectin ligand, potentially revealing a new prognostic and therapeutic target for breast cancer.  相似文献   

14.
15.
16.
The androgen dihydrotestosterone (DHT) caused a maximal 65% inhibition of proliferation of the human breast cancer cells ZR-75-1 after a 10-day incubation period. The same treatment, on the other hand, stimulated by 25-fold the secretion of the breast marker protein GCDFP-15 (gross cystic disease fluid protein-15). The stimulatory effect of DHT on GCDFP-15 mRNA accumulation was already significant (1.6-fold, P less than 0.01) after a 12 h exposure and reached a maximal 25-fold increase after a 12-day incubation period. On the other hand, a 2-day exposure to 1 nM 17 beta-estradiol (E2) alone decreased by 60% GCDFP-15 mRNA levels while it completely blocked the 2.5-fold stimulation of GCDFP-15 secretion induced by concomitant incubation with DHT. Furthermore, a 10-day incubation with E2 increased by 4-fold the proliferation of ZR-75-1 cells whereas such treatment decreased by about 85% both GCDFP-15 mRNA accumulation and the secretion of the glycoprotein. The presence of GCDFP-15 mRNA in human breast cancer samples was restricted to estrogen receptor positive tumors and was significantly correlated with progesterone receptor expression.  相似文献   

17.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

18.
19.
Previous transfection experiments using a zinc-inducible expression vector have shown that overexpression of insulin-like growth factor II (IGFII) in MCF7 human breast cancer cells can reduce dependence on oestrogen for cell growth in vitro (DALY RJ, HARRIS WH, WANG DY, DARBRE PD. (1991) Cell Growth Differentiation 2, 457-464.). Parallel transfections now performed into another oestrogen-dependent human breast cancer cell line (ZR-75-1) yielded three clones of transfected ZR-75-1 cells that produced levels of zinc-inducible IGFII mRNA and secreted mature IGFII protein similar to those found in the transfected MCF7 cells. However, unlike in MCF7 cells, no resulting effects were found on cell growth in the ZR-75-1 clones, even though the ZR-75-1 clones possessed receptors capable of binding 125I-IGFI and showed a growth response to exogenously added IGFII. Medium conditioned by the ZR-75-1 clones could stimulate growth of untransfected MCF7 cells, indicating that the secreted IGFII protein was bioactive. Furthermore, zinc-induced IGFII was capable of increasing both pS2 mRNA levels and CAT activity from a transiently transfected AP1-CAT gene in the ZR-75-1 clones. Constitutive co-overexpression of the protein processing enzyme PC2 resulted in reduced levels of large forms of zinc-inducible IGFII, but zinc treatment still produced no effect on cell growth rate. Finally, however, constitutive co-overexpression of the type I IGF receptor (IGFIR) did result in zinc-inducible increased basal cell growth and reduced dependence on oestrogen for cell growth. These results demonstrate that while overexpression of IGFII per se was sufficient to deregulate MCF7 cell growth, the ZR-75-1 cells are limited in their proliferative response by their intrinsic receptor levels. However, although the proliferative response was limited, molecular responses (expression of pS2 and AP1-CAT) were not limited, indicating that different cellular responses can have different threshold receptor level requirements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号