首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wang W  Fu Z  Zhou JZ  Kim JJ  Thorpe C 《Biochemistry》2001,40(41):12266-12275
The medium chain acyl-CoA dehydrogenase is rapidly inhibited by racemic 3,4-dienoyl-CoA derivatives with a stoichiometry of two molecules of racemate per enzyme flavin. Synthesis of R- and S-3,4-decadienoyl-CoA shows that the R-enantiomer is a potent, stoichiometric, inhibitor of the enzyme. alpha-Proton abstraction yields an enolate to oxidized flavin charge-transfer intermediate prior to adduct formation. The crystal structure of the reduced, inactive enzyme shows a single covalent bond linking the C-4 carbon of the 2,4-dienoyl-CoA moiety and the N5 locus of reduced flavin. The kinetics of reversal of adduct formation by release of the conjugated 2,4-diene were evaluated as a function of both acyl chain length and truncation of the CoA moiety. The adduct is most stable with medium chain length allenic inhibitors. However, the adducts with R-3,4-decadienoyl-pantetheine and -N-acetylcysteamine are some 9- and >100-fold more kinetically stable than the full-length CoA thioester. Crystal structures of these reduced enzyme species, determined to 2.4 A, suggest that the placement of H-bonds to the inhibitor carbonyl oxygen and the positioning of the catalytic base are important determinants of adduct stability. The S-3,4-decadienoyl-CoA is not a significant inhibitor of the medium chain dehydrogenase and does not form a detectable flavin adduct. However, the S-isomer is rapidly isomerized to the trans-trans-2,4-conjugated diene. Protein modeling studies suggest that the S-enantiomer cannot approach close enough to the isoalloxazine ring to form a flavin adduct, but can be facilely reprotonated by the catalytic base. These studies show that truncation of CoA thioesters may allow the design of unexpectedly potent lipophilic inhibitors of fatty acid oxidation.  相似文献   

2.
Y Ikeda  K Okamura-Ikeda  K Tanaka 《Biochemistry》1985,24(25):7192-7199
We systematically studied the visual spectral changes of short-chain, medium-chain, and long-chain acyl coenzyme A (acyl-CoA) dehydrogenases, purified from rat liver mitochondria, that occur upon reaction with acyl-CoA in the absence of an electron acceptor (half-reaction). Acyl-CoA esters having various chain lengths were tested, and changes in the steady-state spectral parameters were correlated with the turnover number in the complete reaction, which represented the ability of an enzyme/substrate combination to produce an enoyl-CoA. The long-wavelength absorbance, centered around 580 nm, was observed only in the enzyme/substrate combinations in which enoyl-CoA product was produced at a significant rate in the complete reaction. There was a good correlation between the magnitudes of the long-wavelength absorbance and the turnover numbers. In contrast, the bleaching of the flavin chromophore at 450 nm was observed not only in the titration with preferred substrates but also in that with unfavorable substrates, which were shorter than favorable substrates. In the interaction with the shorter than favorable substrates, however, enoyl-CoA was not produced, nor did long-wavelength absorbance occur. When short-chain and medium-chain acyl-CoA dehydrogenases were reacted with longer than favorable substrate from which no enoyl-CoA was produced, neither the appearance of the long-wavelength absorbance nor bleaching of flavin chromophore was observed. These data suggest that the catalytic base, which abstracts alpha-proton, and flavin adenine dinucleotide are internally located, and the region containing these two sites may physically be in the form of crevice or pocket.  相似文献   

3.
A series of acyl-CoA analogues has been used to probe the substrate binding site and reductive half-reaction of acyl-CoA oxidase from the alkane utilizing yeast Candida tropicalis. Alkyl-SCoA thioethers, from octyl- to hexadecyl-SCoA, bind to the oxidase with progressively larger spectral perturbation of the flavin chromophore and with an incremental binding energy of about 260 cal/methylene group. The hydrocarbon binding subsite for acyl-CoA oxidase appears extensive and only weakly hydrophobic. CoA binding per se appears to contribute about 2.8 kcal to the observed binding energy. A number of acyl-CoA analogues such as 3-thia-acyl-, 3-oxa-acyl-, trans-3-enoyl-, and 3-keto-acyl-CoA derivatives form charge transfer complexes with the oxidase, but these long wavelength bands are both less pronounced and much less stable than those encountered with the acyl-CoA dehydrogenases. This instability reflects an intrinsic thioesterase activity of the oxidase which is observed with those ligands forming enolate to oxidized flavin charge-transfer complexes, but not with normal substrates such as palmitoyl-CoA. Chemical precedent suggests that these enzyme-bound enolates eliminate CoA via a ketene intermediate. The differences in behavior between acyl-CoA oxidase and dehydrogenase toward the ligands used in this work are discussed in terms of the need to exclude oxygen from productive encounters with substrate-reduced dehydrogenase.  相似文献   

4.
1. Butyryl-CoA dehydrogenase from Peptostreptococcus elsdenii forms very tightly bound complexes with various acyl-CoA compounds. Spectra in some cases merely show resolution of the 450nm band, but those with acetoacetyl-, pent-2-enoyl- and 4-methylpent-2-enoyl-CoA show long-wavelength bands similar to the 710nm band of native enzyme. These complexes are formed instantaneously by the yellow form of the enzyme and much more slowly by the green form. 2. An acid extract of the green enzyme reconverts the yellow into the green form. 3. Hydroxylamine makes irreversible the otherwise reversible conversion of the green enzyme into the yellow form by phenylmercuric acetate. 4. Amino acid analysis for taurine and beta-alanine shows approx. 1mol of CoA/mol of flavin in green enzyme. Anaerobic dialysis of reduced enzyme removes the CoA. On acid precipitation of green enzyme the CoA is found only in the supernatant. 5. It is concluded that native green enzyme is probably complexed with unsaturated acyl-CoA. This is shown to be consistent with findings of other workers. Catalytic activity requires displacement of the acyl-CoA, which is therefore likely to be a potent inhibitor. 6. An explanation is offered for the irreversible conversion of green into yellow enzyme by sodium dithionite. 7. The enzyme displays a feeble, previously undetected, activity towards beta-hydroxybutyryl-CoA. 8. The product of oxidation of pent-4-enoyl-CoA forms a complex with reduced enzyme and strongly inhibits reoxidation of the FAD. This may contribute to inhibition of fatty acid oxidation by pent-4-enoic acid in mammals.  相似文献   

5.
S M Lau  R K Brantley  C Thorpe 《Biochemistry》1989,28(20):8255-8262
4-Thiaacyl-CoA analogues, in which the 4-methylene group is replaced by a thioether sulfur atom, represent new chromophoric substrates of acyl-CoA dehydrogenases and oxidase. The corresponding 4-thia-trans-2-enoyl-CoA products exhibit a strong new absorption band (extinction coefficient 22 mM-1 cm-1) that is red shifted from 312 to 338 nm upon binding to the medium-chain acyl-CoA dehydrogenase. 4-Thiaoctanoyl-CoA reduces the dehydrogenase several-fold slower than octanoyl-CoA, although in turnover it is dehydrogenated 1.5-fold faster. The redox potential of 4-thia analogues is some 30 mV more negative than that of their unsubstituted counterparts. 4-Thia-trans-2-enoyl-CoA derivatives are slowly hydrated by enoyl-CoA hydratase (EC 4.2.1.17) to the corresponding thiohemiacetal which fragments nonenzymatically to 1 equiv each of malonylsemialdehyde-CoA and alkanethiol. This fragmentation reaction might explain the release of methanethiol during the transamination pathway of methionine degradation. 4-Oxaoctanoyl-CoA is a much poorer substrate and kinetic reductant of acyl-CoA dehydrogenase and oxidase than the 4-thia analogue. The corresponding enoyl-CoA product is also fragmented by the hydratase, yielding butanol and malonylsemialdehyde-CoA. Thus, 4-heterosubstituted acyl-CoA derivatives provide new tools for the study of beta-oxidation enzymes.  相似文献   

6.
S M Lau  R K Brantley  C Thorpe 《Biochemistry》1988,27(14):5089-5095
Thia- and oxaoctanoyl-CoA derivatives (substituted at the C-3 and C-4 positions) have been synthesized to prove the reductive half-reaction in the medium-chain acyl-CoA dehydrogenase from pig kidney. 3-Thiaoctanoyl-CoA binds to this flavoenzyme, forming an intense, stable, long-wavelength band (at 804 nm; extinction coefficient = 8.7 mM-1 cm-1 at pH 7.6). The intensity of this band increases about 20% from pH 6.0 to pH 8.8. This long-wavelength species probably represents a charge-transfer complex between bound acyl enolate as the donor and oxidized flavin adenine dinucleotide as the acceptor. Thus, the enzyme catalyzes alpha-proton exchange, and no long-wavelength bands are seen with 3-thiaoctyl-CoA (where the carbonyl moiety is replaced by a methylene group). 3-Oxaoctanoyl-CoA binds comparatively weakly to the dehydrogenase, with a long-wavelength band at 780 nm which is both less intense and less stable than the corresponding thia analogue. These data suggest that the enzyme can accomplish alpha-proton abstraction from certain weakly acidic acyl-CoA derivatives, without concerted transfer of a hydride equivalent to the flavin. 4-Thiaoctanoyl-CoA is dehydrogenated in the standard assay 1.5-fold faster than octanoyl-CoA. Titrations of the medium-chain dehydrogenase with the 4-thia derivative resemble those obtained with octanoyl-CoA, except for the contribution of the strongly absorbing 4-thia-trans-2-octenoyl-CoA product. The corresponding 4-oxa analogue is a much poorer substrate (10% of the rate shown by octanoyl-CoA) but again effects substantially complete reduction of the flavin chromophore in the dehydrogenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Properties of D-amino-acid oxidase from Rhodotorula gracilis   总被引:2,自引:0,他引:2  
The flavoprotein D-amino-acid oxidase was purified to homogeneity from the yeast Rhodotorula gracilis by a highly reproducible procedure. The amino acid composition of the protein was determined; the protein monomer had a molecular mass of 39 kDa and contained one molecule of FAD. The ratio between A274/A455 was about 8.2. D-Amino-acid oxidase from yeast showed typical flavin spectral perturbations on binding of the competitive inhibitor benzoate and was reduced by D-alanine under anaerobiosis. The enzyme reacted readily with sulfite to form a covalent reversible adduct and stabilized the red anionic form of the flavin semiquinone on photoreduction in the presence of 5-deazariboflavin; the 3,4-dihydro-FAD form was not detectable after reduction with sodium borohydride. Thus D-amino-acid oxidase from yeast exhibited most of the general properties of the dehydrogenase/oxidase class of flavoproteins; at the same time, the enzyme showed some peculiar features with respect to the same protein from pig kidney.  相似文献   

8.
The peroxisomal acyl-CoA oxidase has been purified from extracts of the yeast Candida tropicalis grown with alkanes as the principal energy source. The enzyme has a molecular weight of 552,000 and a subunit molecular weight of 72,100. Using an experimentally determined molar extinction coefficient for the enzyme-bound flavin, a minimum molecular weight of 146,700 was determined. Based on these data, the oxidase contains eight perhaps identical subunits and four equivalents of FAD. No other β-oxidation enzyme activities are detected in purified preparations of the oxidase. The oxidase flavin does not react with sulfite to form an N(5) flavin-sulfite complex. Photochemical reduction of the oxidase flavin yields a red semiquinone; however, the yield of semiquinone is strongly pH dependent. The yield of semiquinone is significantly reduced below pH 7.5. The flavin semiquinone can be further reduced to the hydroquinone. The behavior of the oxidase flavin during photoreduction and its reactivity toward sulfite are interpreted to reflect the interaction in the N(1)-C(2)O region of the flavin with a group on the protein which acts as a hydrogen-bond acceptor. Like the acyl-CoA dehydrogenases which catalyze the same transformation of acyl-CoA substrates, the oxidase is inactivated by the acetylenic substrate analog, 3-octynoyl-CoA, which acts as an active site-directed inhibitor.  相似文献   

9.
The algae Mougeotia and Eremosphaera were used for isolation of microbodies with the characteristics of leaf peroxisomes and unspecialized peroxisomes, respectively. In both types of organelles, the following enzymes of the β-oxidation pathway were determined: acyl-CoA oxido-reductase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase. There are indications that the peroxisomal oxidoreductase of both algae is a H2O2-forming oxidase rather than a dehydrogenase.

The enzymes enoyl-CoA hydratase and acyl-CoA oxidoreductase are located also in the mitochondria from Eremosphaera but not from Mougeotia. The mitochondrial acyl-CoA oxidizing enzyme was found to be a dehydrogenase. The specific activities of acyl-CoA oxidase and enoyl-CoA hydratase are lower than in spinach leaf peroxisomes. However, the activity of 3-hydroxyacyl-CoA dehydrogenase in the peroxisomes of both algae is almost 2-fold higher. The capability for degradation of fatty acids is a common feature of all different types of peroxisomes from algae.

  相似文献   

10.
D-aspartate oxidase from beef kidney. Purification and properties   总被引:1,自引:0,他引:1  
The flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been purified to homogeneity from beef kidney cortex. The protein is a monomer with a molecular weight of 39,000 containing 1 molecule of flavin. The enzyme as isolated is a mixture of a major active form containing FAD and a minor inactive form containing 6-hydroxy-flavin adenine dinucleotide (6-OH-FAD). The absorption and fluorescence spectral properties of the two forms have been studied separately after reconstitution of the apoprotein with FAD or 6-OH-FAD, respectively. FAD-reconstituted D-aspartate oxidase has flavin fluorescence, shows characteristic spectral perturbation upon binding of the competitive inhibitor tartaric acid, is promptly reduced by D-aspartic acid under anaerobiosis, reacts with sulfite to form a reversible covalent adduct, stabilizes the red anionic form of the flavin semiquinone upon photoreduction, and yields the 3,4-dihydro-FAD-form after reduction with borohydride. A Kd of 5 X 10(-8) M was calculated for the binding of FAD to the apoprotein. 6-OH-FAD-reconstituted D-aspartate oxidase has no flavin fluorescence, shows no spectral perturbation in the presence of tartaric acid, is not reduced by D-aspartic acid under anaerobiosis, does not stabilize any semiquinone upon photoreduction, and does not yield the 3,4-dihydro-form of the coenzyme when reduced with borohydride; the enzyme stabilizes the p-quinoid anionic form of 6-OH-FAD and lowers its pKa more than two pH units below the value observed for the free flavin. The general properties of the enzyme thus resemble those of the dehydrogenase/oxidase class of flavoprotein, particularly those of the amino acid oxidases.  相似文献   

11.
H D Zeller  R Hille  M S Jorns 《Biochemistry》1989,28(12):5145-5154
Corynebacterial sarcosine oxidase contains both covalently and noncovalently bound FAD and forms complexes with various heterocyclic carboxylic acids (D-proline and 2-furoic, 2-pyrrolecarboxylic, and 2-thiophenecarboxylic acids). 2-Furoic acid, a competitive inhibitor with respect to sarcosine, selectively perturbs the absorption spectrum of the noncovalent flavin, suggesting that the enzyme has a single sarcosine binding site near the noncovalent flavin. Several heterocyclic amines have been identified as new substrates for the enzyme. Similar reactivity is observed with L-proline and L-pipecolic acid whereas L-2-azetidine-carboxylic acid is less reactive. Turnover with L-proline is slow (TN = 4.4 min-1) as compared with sarcosine (TN = 1000 min-1). Anaerobic reduction of the enzyme with heterocyclic amine substrates at pH 8.0 occurs as a biphasic reaction. A similar long-wavelength intermediate is formed in the initial fast phase of each reaction and then decays in a slower second phase to yield 1,5-dihydroFAD. The slow phase is not kinetically significant during aerobic turnover at pH 8.0 and is absent when the anaerobic reactions are conducted at pH 7.0. EPR and other studies at pH 7.0 show that the long-wavelength species is a half-reduced form of the enzyme (1 electron/substrate-reducible flavin) containing 0.9 mol of flavin radical/mol of substrate-reducible flavin. This biradical intermediate exhibits an absorption spectrum similar to that expected for a 50:50 mixture of red anionic and blue neutral flavin radicals. A similar long-wavelength species is observed during titration of the enzyme with sarcosine and other reductants. Studies with L-proline suggest that reduction of the enzyme involves initial transfer of two electrons to the noncovalent flavin. The covalent flavin is not required and can be complexed with sulfite without affecting the rate of electron transfer. The initial half-reduced form of the enzyme appears to be rapidly converted to the biradical form via comproportionation of the reduced noncovalent flavin with the oxidized covalent flavin.  相似文献   

12.
Representative examples of the various classes of flavoproteins have been converted to their apoprotein forms and the native flavin replaced by 8-mercapto-FMN or 8-mercapto-FAD. The spectral and catalytic properties of the modified enzymes are characteristically different from one group to another; the results suggest that flavin interactions at positions N(1) or N(5) of the flavin chromophore have profound influences on the properties of the flavoprotein. 1. The 8-thiolate anion form of 8-mercaptoflavin has an absorption maximum in the region 520 to 550 nm epsilon approximately 30 mM-1 cm-1). This form is retained on binding to flavoproteins whose physiological reactions involve obligatory one-electron transfers (e.g. flavodoxin, NADPH-cytochrome P-450 reductase). In the native form these enzymes stabilize the blue neutral radical of the flavin. A radical form of 8-mercaptoflavin is also stabilized by these proteins. 2. The p-quinoid form of 8-mercaptoflavin has an absorption maximum in the range 560 to 600 nm (epsilon approximately 30 mM-1 cm-1). This form is stabilized on binding to flavoproteins of the dehydrogenase-oxidase class (e.g. glucose oxidase, D-amino acid oxidase, lactate oxidase, Old Yellow Enzyme). These same enzymes in their native flavin form stabilize the red semiquinone, and have a pronounced reactivity with sulfite to form flavin N(5)-sulfite adducts. These properties of the native enzyme, including the ability to react with nitroalkane carbanions, are not exhibited by the 8-mercaptoflavoproteins. 3. A group of flavoenzymes fails to conform strictly to the above classification, exhibiting some properties of both classes. These include the examples of flavoprotein hydroxylases and transhydrogenases studied. 4. The riboflavin-binding protein of hen egg whites binds 8-mercaptoriboflavin preferentially in the unionized state, resulting in a shift in pK from 3.8 with free 8-mercaptoriboflavin to greater than or equal to 9.0 with the protein-bound form.  相似文献   

13.
Venci D  Zhao G  Jorns MS 《Biochemistry》2002,41(52):15795-15802
Nikkomycin antibiotics are potent inhibitors of chitin synthase, effective as therapeutic antifungal agents in humans and easily degradable insecticides in agriculture. NikD is a novel flavoprotein that catalyzes the oxidation of Delta(1)- or Delta(2)-piperideine-2-carboxylate, a key step in the biosynthesis of nikkomycin antibiotics. The resulting dihydropicolinate product may be further oxidized by nikD or converted to picolinate in a nonenzymic reaction. Saturated nitrogen heterocycles (L-pipecolate, L-proline) and 3,4-dehydro-L-proline act as alternate substrates. The ability of nikD to oxidize 3,4-dehydro-L-proline, but not 1-cyclohexenoate, suggests that the enzyme is specific for the oxidation of a carbon-nitrogen bond. An equivalent reaction is possible with the enamine (Delta(2)), but not the imine (Delta(1)), form of the natural piperideine-2-carboxylate substrate. Apparent steady-state kinetic parameters for the reaction of nikD with Delta(1)- or Delta(2)-piperideine-2-carboxylate (k(cat) = 64 min(-1); K(m) = 5.2 microM) or 3,4-dehydro-L-proline (k(cat) = 18 min(-1); K(m) = 13 mM) were determined in air-saturated buffer by measuring hydrogen peroxide formation in a coupled assay. NikD appears to be a new member of the monomeric sarcosine oxidase (MSOX) family of amine oxidizing enzymes. The enzyme contains 1 mol of flavin adenine dinucleotide (FAD) covalently linked to Cys321. The covalent flavin attachment site and two residues that bind substrate carboxylate in MSOX are conserved in nikD. NikD, however, exhibits an unusual long-wavelength absorption band, attributed to charge-transfer interaction between FAD and an ionizable (pK(a) = 7.3) active-site residue. Similar long-wavelength absorption bands have been observed for flavoproteins containing an active site cysteine or cysteine sulfenic acid. Interestingly, Cys273 in nikD aligns with an active-site histidine in MSOX (His269) that is, otherwise, a highly conserved residue within the MSOX family.  相似文献   

14.
The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates.  相似文献   

15.
The flavoenzyme pig kidney general acyl-CoA dehydrogenase (EC 1.3.99.3) is inactivated by cyclohexane-1,2-dione in borate buffer in a reaction that exhibits pseudo-first-order kinetics. Strong protection is afforded by the substrate octanoyl-CoA, as well as by heptadecyl-CoA, a potent competitive inhibitor of the dehydrogenase that does not reduce enzyme flavin. Enzyme exhibiting 10% residual activity in borate buffer contains about 1.3 modified arginine residues per flavin molecule. Very little reduction of the modified enzyme in borate buffer occurs at high concentrations of octanoyl-CoA, in marked contrast with the stoicheiometric reduction of the native enzyme. However, in phosphate buffer alone, the modified enzyme exhibits 55% residual activity and, although binding of substrate is still seriously impaired (apparent Kd=14 microM), excess substrate effects the formation of the characteristic reduced flavin X enoyl-CoA charge-transfer complex. These results suggest that the susceptible arginine residue, though not catalytically essential, is probably within the acyl-CoA-binding site of general acyl-CoA dehydrogenase.  相似文献   

16.
1. Pent-4-enoyl-CoA and its metabolites penta-2,4-dienoyl-CoA and acryloyl-CoA, as well as n-pentanoyl-CoA, cyclopropanecarbonyl-CoA and cyclobutanecarbonyl-CoA, were examined as substrates or inhibitors of purified enzymes of beta-oxidation in an investigation to locate the site of inhibition of fatty acid oxidation by pent-4-enoate. 2. The reactions of various acyl-CoA derivatives with l-carnitine and of various acyl-l-carnitine derivatives with CoA, catalysed by carnitine acetyltransferase, were investigated and V(max.) and K(m) values were determined. Pent-4-enoyl-CoA and n-pentanoyl-CoA were good substrates, whereas cyclobutanecarbonyl-CoA, cyclopropanecarbonyl-CoA and acryloyl-CoA reacted more slowly. A very slow rate with penta-2,4-dienoyl-CoA was detected. Pent-4-enoyl-l-carnitine, n-pentanoyl-l-carnitine and cyclobutanecarbonyl-l-carnitine were good substrates and cyclopropanecarbonyl-l-carnitine reacted more slowly. 3. Pent-4-enoyl-CoA and n-pentanoyl-CoA were substrates for butyryl-CoA dehydrogenase and for octanoyl-CoA dehydrogenase, and both compounds were equally effective competitive inhibitors of these enzymes with butyryl-CoA or palmitoyl-CoA respectively as substrates. V(max.), K(m) and K(i) values were determined. 4. None of the acyl-CoA derivatives inhibited enoyl-CoA hydratase or 3-hydroxybutyryl-CoA dehydrogenase. Penta-2,4-dienoyl-CoA was a substrate for enoyl-CoA hydratase when the reaction was coupled to that catalysed by 3-hydroxybutyryl-CoA dehydrogenase. 5. In a reconstituted sequence with purified enzymes crotonoyl-CoA was largely converted into acetyl-CoA, and pent-2-enoyl-CoA into acetyl-CoA and propionyl-CoA. Penta-2,4-dienoyl-CoA was slowly converted into acetyl-CoA and acryloyl-CoA. 6. Penta-2,4-dienoyl-CoA, a unique metabolite of pent-4-enoate, was the only compound that specifically inhibited an enzyme of the beta-oxidation sequence, 3-oxoacyl-CoA thiolase. The formation of penta-2,4-dienoyl-CoA could explain the strong inhibition of fatty acid oxidation in intact mitochondria by pent-4-enoate.  相似文献   

17.
Vanillyl-alcohol oxidase was purified 32-fold from Penicillium simplicissimum, grown on veratryl alcohol as its sole source of carbon and energy. SDS/PAGE of the purified enzyme reveals a single fluorescent band of 65 kDa. Gel filtration and sedimentation-velocity experiments indicate that the purified enzyme exists in solution as an octamer, containing 1 molecule flavin/subunit. The covalently bound prosthetic group of the enzyme was identified as 8 alpha-(N3-histidyl)-FAD from pH-dependent fluorescence quenching (pKa = 4.85) and no decrease in fluorescence upon reduction with sodium borohydride. The enzyme shows a narrow substrate specificity, only vanillyl alcohol and 4-hydroxybenzyl alcohol are substrates for the enzyme. Cinnamyl alcohol is a strong competitive inhibitor of vanillyl-alcohol oxidation. The visible absorption spectrum of the oxidized enzyme shows maxima at 354 nm and 439 nm, and shoulders at 370, 417 and 461 nm. Under anaerobic conditions, the enzyme is easily reduced by vanillyl alcohol to the two-electron reduced form. Upon mixing with air, rapid reoxidation of the flavin occurs. Both with dithionite reduction and photoreduction in the presence of EDTA and 5-deazaflavin the red semiquinone flavin radical is transiently stabilized. Opposite to most flavoprotein oxidases, vanillyl-alcohol oxidase does not form a flavin N5-sulfite adduct. Photoreduction of the enzyme in the presence of the competitive inhibitor cinnamyl alcohol gives rise to a complete, irreversible bleaching of the flavin spectrum.  相似文献   

18.
Using the Prasinophycean algae Platymonas, Heteromastix, Pedinomonas, and Pyramimonas, subcellular distribution of the enzymes of glycolate metabolism and β-oxidation pathway have been studied. Glycolate dehydrogenase, hydroxypyruvate reductase, and glutamate-glyoxylate aminotransferase are located in the mitochondria. In addition, the mitochondria of all four species contain acyl-coenzyme A (CoA) dehydrogenase, enoyl-CoA hydratase, and thiolase. In Platymonas, Heteromastix, and Pedinomonas, organelles with the characteristic structure of peroxisomes have been detected which also contain the enzymes acyl-CoA oxidase, enoyl-CoA hydratase and thiolase. However, catalase could not be demonstrated in either the peroxisome-like organelles or in the whole cells.  相似文献   

19.
20.
An analysis of overall chain elongation, condensation, beta-hydroxyacyl-CoA dehydrase and 2-trans enoyl-CoA reductase reactions, using the appropriate CoA derivatives as substrates which are required in the microsomal chain elongation of both palmitoyl-CoA and 6,9-octadecadienoyl-CoA, demonstrated that in each instance, the products of these reactions were the CoA derivatives. Reverse dehydrase reactions run with 2-trans enoyl-CoA derivatives as substrates, in the absence of NADPH, revealed that the product was the beta-hydroxyacyl-Coa. In the presence of NADPH, incubations with beta-hydroxyacyl-CoA demonstrated that both the 2-trans derivatives and the alpha, beta-saturated product were recovered as their CoA derivatives. These latter findings are more consistent with the involvement of discrete dehydrase and 2-trans-enoyl-CoA reductase enzymes rather than a single protein catalyzing two reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号