首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.  相似文献   

2.
3.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.  相似文献   

4.
The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat  相似文献   

5.
6.
7.
8.
Evolution of mitochondrial gene content: gene loss and transfer to the nucleus   总被引:22,自引:0,他引:22  
Mitochondrial gene content is highly variable across extant eukaryotes. The number of mitochondrial protein genes varies from 3 to 67, while tRNA gene content varies from 0 to 27. Moreover, these numbers exclude the many diverse lineages of non-respiring eukaryotes that lack a mitochondrial genome yet still contain a mitochondrion, albeit one often highly derived in ultrastructure and metabolic function, such as the hydrogenosome. Diversity in tRNA gene content primarily reflects differential usage of imported tRNAs of nuclear origin. In the case of protein genes, most of this diversity reflects differential degrees of functional gene transfer to the nucleus, with more minor contributions resulting from gene loss from the cell as a consequence of either substitution via a functional nuclear homolog or the cell's dispensation of the function of the gene product. The tempo and pattern of mitochondrial gene loss is highly episodic, both across the broad sweep of eukaryotes and within such well-studied groups as angiosperms. All animals, some plants, and certain other groups of eukaryotes are mired in profound stases in mitochondrial gene content, whereas other lineages have experienced relatively frequent gene loss. Loss and transfer to the nucleus of ribosomal protein and succinate dehydrogenase genes has been especially frequent, sporadic, and episodic during angiosperm evolution. Potential mechanisms for activation of transferred genes have been inferred, and intermediate stages in the process have been identified by comparative studies. Several hypotheses have been proposed for why mitochondrial genes are transferred to the nucleus, why mitochondria retain genomes, and why functional gene transfer is almost exclusively unidirectional.  相似文献   

9.
10.
The rpl33-rps18 gene cluster of the maize chloroplast genome has been mapped and sequenced. The derived amino acid sequence of the S18 protein shows a 7-fold repeat of a hydrophilic heptapeptide domain, S K Q P F R K, in the N-terminal region. Such a sequence is absent in the E. coli S18 and in the chloroplast S18 of the lower plant liverwort. In tobacco and rice chloroplast S18 it is present 2 and 6 times, respectively. Thus a long N-terminal repeat (resembling in composition the large C-terminal heptapeptide repeat in the eukaryotic pol II) appears to be characteristic of monocot cereal S18.  相似文献   

11.
During evolution, the genomes of eukaryotic cells have undergone major restructuring to meet the new regulatory challenges associated with compartmentalization of the genetic material in the nucleus and the organelles acquired by endosymbiosis (mitochondria and plastids). Restructuring involved the loss of dispensable or redundant genes and the massive translocation of genes from the ancestral organelles to the nucleus. Genomics and bioinformatic data suggest that the process of DNA transfer from organelles to the nucleus still continues, providing raw material for evolutionary tinkering in the nuclear genome. Recent reconstruction of these events in the laboratory has provided a unique tool to observe genome evolution in real time and to study the molecular mechanisms by which plastid genes are converted into functional nuclear genes. Here, we summarize current knowledge about plastid-to-nuclear gene transfer in the context of genome evolution and discuss new insights gained from experiments that recapitulate endosymbiotic gene transfer in the laboratory.  相似文献   

12.
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer is a recent evolutionary event, which occurred within Cruciferae, probably after the divergence of Arabidopsis and Brassica napus. A 5′ extension of the rps14 reading frame encodes a presequence which, in?vitro, targets the polypeptide to isolated mitochondria and is cleaved off during or after import. No intron was found at the junction of the targeting presequence with the mitochondrially derived sequence, which are directly connected. By contrast, a 90-bp intron, which is removed by splicing to give a mature poly(A)+mRNA of 0.9 kb, is located in the 3′ non-coding region. To our knowledge, this is the first report of an intron in such a position in a functional transferred gene in higher plants, and suggests that exon shuffling may have been involved in the acquisition of elements necessary for expression in the nucleus. Putative roles of this intron in polyadenylation and enhancement of gene expression are discussed.  相似文献   

13.
14.
Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.  相似文献   

15.
16.
17.
Eukaryotic ribosomes contain an acidic ribosomal protein of about 38 kDa which shows immunological cross-reactivity with the 13 kDa-type acidic ribosomal proteins that are related to L7/L12 of bacterial ribosomes. By using a cDNA clone for 38 kDa-type acidic ribosomal protein A0 from the yeast Saccharomyces cerevisiae, we have cloned a genomic DNA encoding A0 and determined the sequence of 1,614 nucleotides including about 500 nucleotides in the 5'-flanking region. The gene lacks introns and possesses two boxes homologous to upstream activation sequences (UASrpg) in the 5'-flanking region. The amino acid sequence of A0 deduced from the nucleotide sequence shows that A0 shares a highly similar carboxyl-terminal region of about 40 amino acids in length with 13 kDa-type acidic ribosomal proteins, including an identical carboxyl-terminal, DDDMGFGLFD. In the amino-terminal region A0 contains an arginine-rich segment which shows a low but distinct similarity to that of bacterial ribosomal protein L10 through which L10 is thought to bind to 23S rRNA. On the other hand, the carboxyl-terminal half of A0 is enriched with hydrophobic amino acid residues including four pairs of phenylalanine residues which are all conserved in a human homologue.  相似文献   

18.
19.
【目的】随机选择裂殖酵母核糖体蛋白RPL21作为研究对象,分析其表达不足对细胞的影响。【方法】通过同源臂交换的方法,敲除裂殖酵母基因组中RPL21蛋白的编码基因rpl21-1和rpl21-2,观察突变菌株rpl21-1Δ和rpl21-2Δ细胞内的核糖体合成情况以及细胞表型变化。【结果】突变菌株rpl21-1Δ和rpl21-2Δ细胞内总的rpl21(rpl21-1+rpl21-2)表达水平与野生型菌株相比分别减少了66.5%和58.7%,合成的核糖体总量较野生型菌株分别下降了62.8%和50.4%。突变菌株在YEPD液体培养基中培养时发生细胞粘附现象,而基因回补的重组菌株rpl21-1Δ/RPL21-1和rpl21-2Δ/RPL21-2突变株细胞中粘附现象消失。【结论】核糖体蛋白损伤造成核糖体合成受阻,进而引发细胞生长过程中的粘附在粟酒裂殖酵母中是普遍存在的现象。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号